Skip to main content

Fabrication of Multiphase Particles and Grain Refinement of Al-Containing Magnesium

  • Conference paper
  • First Online:
Physics and Engineering of Metallic Materials (CMC 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 217))

Included in the following conference series:

  • 1411 Accesses

Abstract

Grain refinement is an effective way to improve the mechanical properties of magnesium alloys. However, refining efficiency of grain refiner for Al-containing magnesium alloys is unstable, restricting the further applications in the engineering field. In this paper, a typical Al-containing magnesium alloy (AZ91) was studied. The Al–Ti–C–Y alloy containing multiphase particles (Al4C3, TiC, Al2Y) was prepared by self-propagating high-temperature synthesis (SHS) and melting-casting method. Meanwhile, the size, morphology, and distribution of multiphase particles in the Al–Ti–C–Y alloy and the grain refinement performance of multiphase particles for Al-containing magnesium alloys were investigated. The grain size of the alloys decreases first and then increases with the increasing amount of master alloy added. The highest refining efficiency of Al–Ti–C–Y for AZ91 is 51% with 1.5 wt% master alloy added.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.L. Mordike, Magnesium properties-applications-potential. J. Mater. Sci. Eng. A. 302(1), 37–45 (2001)

    Article  Google Scholar 

  2. L.H. Wen, J.I. Ze-Sheng, Research and application of heat-resistant magnesium alloy and its strengthening mechanism. Light Alloy Fabr. Technol. (2014)

    Google Scholar 

  3. I.J. Polmear, Magnesium alloys and applications. J. Mater. Sci. Technol. 10(1), 1–16 (1994)

    Article  CAS  Google Scholar 

  4. M.K. Kulekci, Magnesium and its alloys applications in automotive industry. Int. J. Adv. Mag. Tech. 39(9–10), 851–865 (2008)

    Article  Google Scholar 

  5. W. Ding, P. Fu, L. Peng et al., Advanced magnesium alloys and their applications in aerospace. Spacecraft Environ. Eng. (2011)

    Google Scholar 

  6. Y.C. Lee, A.K. Dahle, D.H. Stjohn, Grain Refinement of Magnesium Essential Readings in Magnesium Technology (Springer, 2016), pp. 247–254

    Google Scholar 

  7. D.H. Stjohn, M.A. Easton, M. Qian et al., Grain refinement of magnesium alloys: a review of recent research, theoretical developments, and their application. Metall. Mater. Trans. A., Phys Metall. Mater. Sci. 44(7), 2935–2949 (2013)

    Article  CAS  Google Scholar 

  8. Y. Ali, D. Qiu, B. Jiang et al., Current research progress in grain refinement of cast magnesium alloys: a review article. J. Alloy. Compd. 619, 639–651 (2015)

    Article  CAS  Google Scholar 

  9. S.S. Li, B. Tang, D.B. Zeng, Effects and mechanism of Ca on refinement of AZ91D alloy. J. Alloy. Compd. 437(1), 317–321 (2007)

    Article  CAS  Google Scholar 

  10. Y.X. Wang, X.Q. Zeng, W.J. Ding et al., Grain refinement of AZ31 magnesium alloy by titanium and low-frequency electromagnetic casting. Metall. Mater. Trans. A. 38(6), 1358–1366 (2007)

    Article  Google Scholar 

  11. Y.Z. Zhao, X.T. Liu, H. Ha, Effect of Al4C3 particle size distribution in a Al–2.5C master alloy on the refining efficiency of the AZ31 alloy. Acta Metall. Sin. Eng. lett. 30(6), 505–512 (2017)

    Google Scholar 

  12. M. Qian, P. Cao, Discussions on grain refinement of magnesium alloys by carbon inoculation. Scr. Mater. 52(5), 415–419 (2005)

    Article  CAS  Google Scholar 

  13. X.Y. Liu, H.R. Geng, M. Zuo et al., Influence of MnCO3 addition on the grain refinement of AZ91 magnesium alloy. Appl. Mech. Mater. 703(2), 56–59 (2014)

    Google Scholar 

  14. J. Du, M. Wang, M. Zhou et al., Evolutions of grain size and nucleating particles in carbon-inoculated Mg–3% Al alloy. J. Alloy. Compd. 592(14), 313–318 (2014)

    Article  CAS  Google Scholar 

  15. Y.C. Lee, A.K. Dahle, D.H. StJohn, The role of solute in grain refinement of magnesium. Metall. Mater. Trans. A. 31(11), 2895–2906 (2000)

    Article  Google Scholar 

  16. Y. Tamura, T. Haitani, E. Yano et al., Gain refining mechanism of hight-purity Mg–9% Al alloy ingot and influence of Fe or Mn addition on cast grain size. Light Met. 51(8), 403–408 (2001)

    Article  Google Scholar 

  17. J.F. Nie, X. Gao, S.M. Zhu, Enhanced age hardening response and creep resistance of Mg–Gd alloys containing Zn. Scr. Mater. 53(9), 1049–1053 (2005)

    Article  CAS  Google Scholar 

  18. D. Qiu, M.X. Zhang, J.A. Taylor et al., A novel approach to the mechanism for the grain refining effect of melt superheating of Mg–Al alloys. Acta Mater. 55(6), 1863–1871 (2007)

    Article  CAS  Google Scholar 

  19. P. Cao, M. Qian, D.H. Stjohn, Mechanism for grain refinement of magnesium alloys by superheating. Scr. Mater. 56(7), 633–636 (2007)

    Article  CAS  Google Scholar 

  20. M.N. Naik, K.D. Reddy, P.V. Ramaiah et al., Exploration of mechanical behaviour and wear behaviour of Al4C3 reinforced aluminium metal matrix composites. Mater. Today 4(2), 2989–2998 (2017)

    Google Scholar 

  21. S. Liu, Y. Zhang, H. Han, Role of manganese on the grain refining efficiency of AZ91D magnesium alloy refined by Al4C3. J. Alloy. Compd. 491(1), 325–329 (2010)

    Article  CAS  Google Scholar 

  22. X.T. Liu, H. Hao, The influence of carbon content on Al–Ti–C master alloy prepared by the self-propagating high-temperature synthesis in melt method and its refining effect on AZ31 alloy. J. Alloy. Compd. 623, 266–273 (2015)

    Article  CAS  Google Scholar 

  23. H. Hao, X.T. Liu, C.F. Fang et al. Effect of in-situ Al2Y particles on the as-cast/as-rolled microstructure and mechanical properties of AZ31 alloy. J. Mater. Sci. Eng. A. 698 (2017)

    Article  CAS  Google Scholar 

  24. H.W. Chang, D. Qiu, J.A. Taylor et al., The role of Al2Y in grain refinement in Mg–Al–Y alloy system. J. Magnes. Alloy. 1(2), 115–121 (2013)

    Article  Google Scholar 

  25. W.C. Lee, S.L. Chung, Ignition phenomena and reaction mechanisms of the self-propagating high-temperature synthesis reaction in the titanium–carbon–aluminum system. J. Am. Ceram. Soc. 80(1), 53–61 (1997)

    Article  CAS  Google Scholar 

  26. Y. Choi, S.W. Rhee, Effect of aluminium addition on the combustion reaction of titanium and carbon to form TiC. J. Mater. Sci. 28(24), 6669–6675 (1993)

    Article  CAS  Google Scholar 

  27. H.Y. Wang, Q.C. Jiang, X.L. Li et al., In situ synthesis of TiC/Mg composites in molten magnesium. Scr. Mater. 48(9), 1349–1354 (2003)

    Article  CAS  Google Scholar 

  28. N. Eustathopoulos, J.C. Joud, P. Desre et al., The wetting of carbon by aluminium and aluminium alloys. J. Mater. Sci. 9(8), 1233–1242 (1974)

    Article  CAS  Google Scholar 

  29. C.X. Xu, B.F. Lu, L.L. Zheng et al., Grain refinement of AZ31 magnesium alloy by Al–Ti–C–Y alloy. J. Rare Earth. 26(4), 604–608 (2008)

    Article  Google Scholar 

  30. Z. Wang, X. Liu, J. Zhang et al., Study of the reaction mechanism in the Al–C binary system through DSC and XRD. J. Mater. Sci. 39(6), 2179–2181 (2004)

    Article  CAS  Google Scholar 

  31. Y. Zhou, Z.Q. Li, Structural characterization of a mechanical alloyed Al–C mixture. J Alloy. Compd. 414(1–2), 107–112 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Hao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, CH., Fu, Y., Wang, H., Hao, H. (2019). Fabrication of Multiphase Particles and Grain Refinement of Al-Containing Magnesium. In: Han, Y. (eds) Physics and Engineering of Metallic Materials. CMC 2018. Springer Proceedings in Physics, vol 217. Springer, Singapore. https://doi.org/10.1007/978-981-13-5944-6_59

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5944-6_59

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5943-9

  • Online ISBN: 978-981-13-5944-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics