Skip to main content

Deformation Behavior and Constitutive Model for Isothermal Compression of TC4 Alloy

  • Conference paper
  • First Online:
Physics and Engineering of Metallic Materials (CMC 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 217))

Included in the following conference series:

  • 1446 Accesses

Abstract

The uniaxial hot compression deformation behaviors of TC4 alloy are investigated by a Gleeble-1500D thermo-physical simulator at the temperatures of 750–950 °C and at the strain rates of 0.01–10.0 s−1. The results show that the curves of the true stress–strain exhibit a typical dynamic recrystallization process. The Arrhenius equation is employed to predict the flow stress. The entire flow curve is modeled using the equation, whereas there exists large deviation at almost all of the stain rates. To ensure the accuracy of predicted results, a modified Zener–Hollomon parameter (Z′) is introduced. The results show that the modified constitutive equations established in this study could well predict the value of flow stress in the hot deformation of TC4 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.Z. Zhang, Y.B. Zhao, C.J. Zhang, J.C. Han, M.J. Sun, M. Xu, The microstructure, mechanical properties, and oxidation behavior of beta-gamma TiAl alloy with excellent hot workability. Mater. Sci. Eng., A 700, 366–373 (2017)

    Article  CAS  Google Scholar 

  2. X.F. Ding, J.P. Lin, L.Q. Zhang, Y.Q. Su, G.L. Chen, Microstructural control of TiAl–Nb alloys by directional solidification. Acta Mater. 60(2), 498–506 (2012)

    Article  CAS  Google Scholar 

  3. G. Liu, Z. Wang, X. Li, Y. Su, J. Guo, H. Fu, G. Wang, Continued growth controlling of the non-preferred primary phase for the parallel lamellar structure in directionally solidified Ti–50Al–4Nb alloy. J. Alloy. Compd. 632, 152–160 (2015)

    Article  CAS  Google Scholar 

  4. H. Clemens, S. Mayer, Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv. Eng. Mater. 15(4), 191–215 (2013)

    Article  CAS  Google Scholar 

  5. E. Norouzi, M. Atapour, M. Shamanian, Effect of bonding time on the joint properties of transient liquid phase bonding between Ti–6Al–4V and AISI 304. J. Alloy. Compd. 701, 335–341 (2017)

    Article  CAS  Google Scholar 

  6. C.-C. Shen, C.-M. Wang, Effects of hydrogen loading and type of titanium hydride on grain refinement and mechanical properties of Ti–6Al–4V. J. Alloy. Compd. 601, 274–279 (2014)

    Article  CAS  Google Scholar 

  7. Z. Zhao, J. Chen, X. Lu, H. Tan, X. Lin, W. Huang, Formation mechanism of the α variant and its influence on the tensile properties of laser solid formed Ti-6Al-4V titanium alloy. Mater. Sci. Eng., A 691, 16–24 (2017)

    Article  CAS  Google Scholar 

  8. W. Xu, E.W. Lui, A. Pateras, M. Qian, M. Brandt, In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance. Acta Mater. 125, 390–400 (2017)

    Article  CAS  Google Scholar 

  9. Y. Kim, Y.-B. Song, S.H. Lee, Y.-S. Kwon, Characterization of the hot deformation behavior and microstructural evolution of Ti–6Al–4V sintered preforms using materials modeling techniques. J. Alloy. Compd. 676, 15–25 (2016)

    Article  CAS  Google Scholar 

  10. G.-Z. Quan, G.-C. Luo, J.-T. Liang, D.-S. Wu, A. Mao, Q. Liu, Modelling for the dynamic recrystallization evolution of Ti–6Al–4V alloy in two-phase temperature range and a wide strain rate range. Comput. Mater. Sci. 97, 136–147 (2015)

    Article  CAS  Google Scholar 

  11. Y. Liu, Y. Ning, Z. Yao, H. Guo, Hot deformation behavior of Ti–6.0Al–7.0Nb biomedical alloy by using processing map. J. Alloy. Compd. 587, 183–189 (2014)

    Article  CAS  Google Scholar 

  12. Y. Han, W. Zeng, Y. Qi, Y. Zhao, Optimization of forging process parameters of Ti600 alloy by using processing map. Mater. Sci. Eng., A 529, 393–400 (2011)

    Article  CAS  Google Scholar 

  13. R.G. Guan, Y.T. Je, Z.Y. Zhao, C.S. Lee, Effect of microstructure on deformation behavior of Ti–6Al–4V alloy during compressing process. Mater. Des. 1980–2015(36), 796–803 (2012)

    Article  Google Scholar 

  14. Y.B. Tan, J.L. Duan, L.H. Yang, W.C. Liu, J.W. Zhang, R.P. Liu, Hot deformation behavior of Ti–20Zr–6.5Al–4V alloy in the α + β and single β phase field. Mater. Sci. Eng., A 609, 226–234 (2014)

    Article  CAS  Google Scholar 

  15. Z.X. Zhang, S.J. Qu, A.H. Feng, J. Shen, D.L. Chen, Hot deformation behavior of Ti-6Al-4V alloy: Effect of initial microstructure. J. Alloy. Compd. 718, 170–181 (2017)

    Article  CAS  Google Scholar 

  16. N.-K. Park, J.-T. Yeom, Y.-S. Na, Characterization of deformation stability in hot forging of conventional Ti–6Al–4V using processing maps. J. Mater. Process. Technol. 130–131, 540–545 (2002)

    Article  Google Scholar 

  17. M.A. Shafaat, H. Omidvar, B. Fallah, Prediction of hot compression flow curves of Ti–6Al–4V alloy in α + β phase region. Mater. Des. 32(10), 4689–4695 (2011)

    Article  CAS  Google Scholar 

  18. E.I. Poliak, J.J. Jonas, Initiation of dynamic recrystallization in constant strain rate hot deformation. ISIJ Int. 43(5), 684–691 (2003)

    Article  CAS  Google Scholar 

  19. J. Porntadawit, V. Uthaisangsuk, P. Choungthong, Modeling of flow behavior of Ti–6Al–4V alloy at elevated temperatures. Mater. Sci. Eng., A 599, 212–222 (2014)

    Article  CAS  Google Scholar 

  20. P. Zhang, C. Yi, G. Chen, H. Qin, C. Wang, Constitutive model based on dynamic recrystallization behavior during thermal deformation of a nickel-based superalloy. Metals Open Access Metall. J. 6(7), 161 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhong, J., Tao, P., Xu, Q., Liu, B., Ji, Z. (2019). Deformation Behavior and Constitutive Model for Isothermal Compression of TC4 Alloy. In: Han, Y. (eds) Physics and Engineering of Metallic Materials. CMC 2018. Springer Proceedings in Physics, vol 217. Springer, Singapore. https://doi.org/10.1007/978-981-13-5944-6_57

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5944-6_57

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5943-9

  • Online ISBN: 978-981-13-5944-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics