Skip to main content

Bioactive Secondary Metabolites of Trichoderma spp. for Efficient Management of Phytopathogens

  • Chapter
  • First Online:
Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms

Abstract

Many species of Trichoderma produce and secrete chemically diverse, bioactive secondary metabolites against various antagonistic microorganisms, including phytopathogens. Both volatile and non-volatile secondary metabolites are highly efficient for the management of phytopathogens, even under field conditions. Hence, secondary metabolites can be used as eco-friendly alternatives to their synthetic counterparts. Various secondary metabolites of Trichoderma spp. showed significant antifungal, antibacterial, antiviral, nematicidal, herbicidal, and insecticidal activity. Also, some secondary metabolites were responsible for inducing the host defense network. It found Trichoderma spp. separating into three groups. T. harzianum is best species among all Trichoderma that used it against enemies of the plant. However, secondary metabolites can be the best alternative to chemical pesticides by manufacturing the biopesticides and biofertilizer. This chapter discusses the role of various secondary metabolites of Trichoderma spp. and their applications in managing crop losses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Ani LKT (2006) Induce resistance against cucumber mosaic virus by pseudomonas fluorescens migula. MSc Department of Plant Protection, College of Agriculture, University of Baghdad, Baghdad, Iraq, pp 90

    Google Scholar 

  • Al-Ani LKT (2017a) PGPR: A good step to control several of plant pathogens. In: Singh HB, Sarma BK, Keswani C (eds) Advances in PGPR Research. CABI, UK, pp 398–410

    Google Scholar 

  • Al-Ani LKT (2017b) Potential of utilizing biological and chemical agents in the control of Fusarium wilt of banana. PhD thesis, School of Biology Science, Universiti Sains Malaysia, Pulau Pinang, Malaysia, p 259

    Google Scholar 

  • Al-Ani LKT (2018a) Trichoderma: beneficial role in sustainable agriculture by plant disease management. In: Dilfuza E (ed) Microorganisms for sustainability. Springer, Singapore

    Google Scholar 

  • AL-Ani LKT (2018b) Trichoderma from extreme environments: physiology, diversity, and antagonistic activity. In: Egamberdieva D, Birkeland N-K, Panosyan H, Li W-J (eds) Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications. Microorganisms for Sustainability. Springer, Singapore, pp 388–403

    Chapter  Google Scholar 

  • AL-Ani LKT (2019a) The importance of endophytic fungi from the medicinal plant: Diversity, natural bioactive compounds, and control of plant pathogens. In: Egamberdieva D et al (eds) Medically important plant biomes source of secondary metabolites. Springer, Singapore, (In Press)

    Google Scholar 

  • AL-Ani LKT (2019b) A patent survey on Trichoderma spp. (from 2007-2017). In: Singh HB, Keswani C, Singh SP (eds) Intellectual Property Issues in Microbiology. Springer, Singapore, (In Press)

    Google Scholar 

  • AL-Ani LKT (2019c) Entomopathogenic fungi in intellectual property and using in biotechnology. In: Singh HB, Keswani C, Singh SP (eds) Intellectual Property Issues in Microbiology. Springer, Singapore, (In Press)

    Google Scholar 

  • AL-Ani LKT (2019d) Recent Patents on Endophytic Fungi and their International Market. In: Singh HB, Keswani C, Singh SP (eds) Intellectual Property Issues in Microbiology. Springer, Singapore, (In Press)

    Google Scholar 

  • AL-Ani LKT (2019e) Bioactive secondary metabolites of Trichoderma spp. for efficient management of phytopathogens. In: Singh HB, Keswani C, Reddy MS, Royano ES, García-Estrada C (eds) Secondary metabolites of plant growth promoting rhizomicroorganisms - discovery and applications. Springer, Singapore (In Press)

    Google Scholar 

  • Al-Ani RA, Al-Ani LKT (2011) Induced of systemic resistance in cucumber plants against Cucumber mosaic virus (CMV) by Pseudomonas fluorescens Migula. Arab Journal of Plant Protection 29:36–42

    Google Scholar 

  • Al-Ani LKT, Albaayit SFA (2018a) Antagonistic of some Trichoderma against Fusarium oxysporum sp. f. cubense tropical race 4 (FocTR4). International conference on Research in Education & Science, ICRES April 28 – May 1, Marmaris, Turkey, pp 271 (Abstract)

    Google Scholar 

  • Al-Ani LKT, Albaayit SFA (2018b) Antagonistic of some Trichoderma against Fusarium oxysporum sp. f. cubense tropical race 4 (FocTR4). The Eurasia Proceedings of Science. Technology, Engineering & Mathematics (EPSTEM) 2:35–38

    Google Scholar 

  • Al-Ani LKT, Salleh, B (2010) Control of Fusarium wilt of banana by non pathogenic Fusarium oxysporum. PPSKH colloquium, Pust Pengajian Sains Kajihayat/School of Biological Sciences, USM, 2–4 June, p 10.

    Google Scholar 

  • Al-Ani LKT, Negim E-S, Mohammed AM, Salleh B, Saleh MI (2012) Antifungal activity of novel Binary grafting polymers. 1st USM – KAZNU International Conference on: Challenges of Teaching and Chemistry Research in Institutions of Higher Learning, 11-13 July, p 44

    Google Scholar 

  • Al-Ani LKT, Salleh B, Mohammed AM, Ghazali AHA, Al-Shahwany AW, Azuddin NF (2013a) Biocontrol of Fusarium wilt of Banana by Non-pathogenic Fusarium spp. International symposium on tropical fungi, ISTF, IPB International Convention Center, Bogor, Indonesia; 09/2013, pp 50–51

    Google Scholar 

  • Al-Ani LKT, Salleh B, Ghazali AHA (2013b) Biocontrol of fusarium wilt of banana by Trichoderma spp. 8th PPSKH colloquium, Pust Pengajian Sains Kajihayat/School of Biological Sciences, USM, 5–6 June.

    Google Scholar 

  • Al-Ani LKT, Yonus MI, Mahdii BA, Omer MA, Taher JK, Albaayit SFA, Al-Khoja SB (2018) First record of use Fusarium proliferatum fungi in direct treatment to control the adult of wheat flour Tribolium confusum, as well as, use the entomopathogenic fungi Beauveria bassiana. Ecology, Environment and Conservation 24(3):29–34

    Google Scholar 

  • Al-Ani LKT, Mohammed AM, Ibrahim NF, Azuddin NF, Aguilar-Marcelino L (2019) Biological control of Fusarium oxysporum f. sp. cubense tropical race 4 in vivo by using three species of Trichoderma. Arc Phytopathol Plant Protect (In press)

    Google Scholar 

  • Ahluwalia V, Kumar J, Rana VS, Sati OP, Walia S (2015) Comparative evaluation of two Trichoderma harzianum strains for major secondary metabolite production and antifungal activity. Nat Prod Res 29(10):914–920. https://doi.org/10.1080/14786419.2014.958739

    Article  CAS  PubMed  Google Scholar 

  • Alwhibi MS, Hashem A, Abd_Allah EF, Alqarawi AA, Soliman DWK, Wirth S, Egamberdieva D (2017) Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. J Integr Agric 16(8):1751–1757. https://doi.org/10.1016/S2095-3119(17)61695-2

    Article  Google Scholar 

  • Amin F, Razdan VK, Mohiddin FA, Bhat KA, Banday S (2010) Effect of volatile metabolites of Trichoderma species against seven fungal plant pathogens in vitro. J Phytology 2(10):34–37

    Google Scholar 

  • Anwar J, Iqbal Z (2017) Effect of growth conditions on antibacterial activity of Trichoderma harzianum against selected pathogenic bacteria. Sarhad J Agric 33(4):501–510. https://doi.org/10.17582/journal.sja/2017/33.4.501.510

    Article  Google Scholar 

  • Attitalla IH, Mansour SE, Mohamed WS, Al-Ani LKT, Mohammed AM, Faturi MY, Balal IAA, El-Maraghy SSM (2010a) Influence of aspergillus flavus and aspergillus terreus on the protein value of the two varieties of peanut grains. International conference, International Mycotoxin Conference, MycoRed, Penang –Malaysia, 1-4 Dec (177)

    Google Scholar 

  • Attitalla IH, Laith KA, Nasib MA, Balal IAA, Zakaria M, El-Maraghy SSM, Karim SR (2010b). Screening of fungi associated with commercial grains and animal feeds in Al-Bayda governorate, libya. World Appl Sci J 9(7):746–756

    Google Scholar 

  • Bae S, Mohant TK, Chung JY, Ryu M, Gweekyo P, Shim S, Hong SB, Seo H, Bae DW, Bae I, Kim JJ, Bae H (2016) Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biol Control 92:128–138. https://doi.org/10.1111/j.1472-765X.2009.02599.x

    Article  CAS  Google Scholar 

  • Balakrishnan S, Parthasarathy S, Kamalakannan A, Kuppusamy S, Gopalakrishnan C (2017) Evaluation of antagonistic activity and plant growth promotion by paste formulation of Trichoderma harzianum. J Pharmacogn Phytochem 6(6):355–360

    CAS  Google Scholar 

  • Barakat FM, Abada KA, Abou-Zeid NM, El-Gammal YHE (2014) Effect of volatile and non-volatile compounds of Trichoderma spp. on Botrytis fabae the causative agent of faba bean chocolate spot. Am J Life Sci 2(6–2):11–18. https://doi.org/10.11648/j.ajls.s.2014020602.12

    Article  Google Scholar 

  • Berg A, Wangu HVK, Nkengfack AE, Schlegel B (2004) Lignoren, a new sesquiterpenoid metabolite from Trichoderma lignorum HKI 0257. J Basic Microbiol 44:317–319. https://doi.org/10.1002/jobm.200410383

    Article  CAS  PubMed  Google Scholar 

  • Bisen K, Keswani C, Mishra S, Saxena A, Rakshit A, Singh HB (2015) Unrealized potential of seed biopriming for versatile agriculture. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 193–206

    Chapter  Google Scholar 

  • Bisen K, Keswani C, Patel JS, Sarma BK, Singh HB (2016) Trichoderma spp.: efficient inducers of systemic resistance in plants. In: Chaudhary DK, Verma A (eds) Microbial-mediated induced systemic resistance in plants. Springer, Singapore, pp 185–195

    Chapter  Google Scholar 

  • Bodo B, Rebuffat S, El Hajji M, Davoust D (1985) Structure of trichorzianine A IIIc, an antifungal peptide from Trichoderma harzianum. J Am Chem Soc 107(21):6011–6017

    Article  CAS  Google Scholar 

  • Brito JP, Ramada MH, de Magalhães MT, LP S, Ulhoa CJ (2014) Peptaibols from Trichoderma asperellum TR356 strain isolated from Brazilian soil. Springer Plus 3:600. https://doi.org/10.1186/2193-1801-3-600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai F, Yu G, Wang P, Wei Z, Fu L, Shen Q, Chen W (2013) Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol Biochem 73:106–113. https://doi.org/10.1016/j.plaphy.2013.08.011

    Article  CAS  PubMed  Google Scholar 

  • Carvalho DDC, Junior ML, Martins I, Inglis PW, Mello SCM (2014) Biological control of Fusarium oxysporum f. sp. phaseoli by Trichoderma harzianum and its use for common bean seed treatment. Trop Plant Pathol 39(5):384–391

    Article  Google Scholar 

  • Chakraborty MR, Chatterjee NC (2008) Control of fusarium wilt of Solanum melongena by Trichoderma spp. Biol Plant 52(3):582–586

    Article  Google Scholar 

  • Cherkupally R, Amballa H, Reddy BN (2017) In vitro antagonistic activity of Trichoderma species against Fusarium oxysporum f. sp. melongenae. Int J Appl Agric Res 12(1):87–95

    Google Scholar 

  • Choudary KA, Reddy KRN, Reddy MS (2007) Antifungal activity and genetic variability of Trichoderma harzianum isolates. J Mycol Pl Pathol 37(2):1–6

    Google Scholar 

  • Chutrakul C, Alcocer M, Bailey K, Peberdy JF (2008) The production and characterisation of trichotoxin peptaibols, by Trichoderma asperellum. Chem Biodivers 5:1694–1705. https://doi.org/10.1002/cbdv.200890158

    Article  CAS  PubMed  Google Scholar 

  • Corley DG, Miller-Wideman M, Durley RC (1994) Isolation and structure of harzianum A: a new trichothecene from Trichoderma harzianum. J Nat Prod 57(3):422–425

    Article  CAS  PubMed  Google Scholar 

  • Dababat AEA (2007) Importance of the mutualistic endophyte Fusarium oxysporum 162 for enhancement of tomato transplants and the biological control of the root-knot nematode Meloidogyne incognita, with particular reference to mode-of-act. Ph.D. thesis, University of Bonn

    Google Scholar 

  • Daniel HCF, Wilfredo FF, Francisco CR, Gabriel GM, Epifanio CDA (2014) Antibiosis in vitro of Trichoderma strains metabolic extract on mycelial growth and reproductive capacity of Fusarium oxysporum isolated from pepper plants (Capsicum annuum L.). Br Biotechnol J 4(4):387–399

    Article  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology 9(10):749–759

    Article  CAS  PubMed  Google Scholar 

  • Dubey SC, Tripathi A, Dureja P, Grover A (2011) Characterization of secondary metabolites and enzymes produced by Trichoderma species and their efficacy against plant pathogenic fungi. Indian J Agric Sci 81(5):455–461

    CAS  Google Scholar 

  • El-Hasan A, Walker F, Buchenauer H (2008) Trichoderma harzianum and its metabolite 6-pentyl-alpha-pyrone suppress fusaric acid produced by Fusarium moniliforme. J Phytopathol 156:79–87. https://doi.org/10.1111/j.1439-0434.2007.01330.x

    Article  CAS  Google Scholar 

  • El-Hasan A, Walker F, Schone J, Buchenauer H (2009) Detection of viridiofungin A and other antifungal metabolites excreted by Trichoderma harzianum active against different plant pathogens. Eur J Plant Pathol 124:457–470

    Article  CAS  Google Scholar 

  • El-Hasan A, Schöne J, Höglinger B, Walker F, Voegele RT (2017) Assessment of the antifungal activity of selected biocontrol agents and their secondary metabolites against Fusarium graminearum. Eur J Plant Pathol 150(1):91–103. https://doi.org/10.1007/s10658-017-1255-0

    Article  CAS  Google Scholar 

  • El-Hassan SA, Gowen SR, Pembroke B (2013) Use of Trichoderma hamatum for biocontrol of lentil vascular wilt disease: efficacy, mechanisms of interaction and future prospects. J Plant Prot Res 53(1):12–26

    Article  Google Scholar 

  • Fukami A, Nakamura T, Kim YP, Shiomi K, Hayashi M, Nagai T et al (2000) A new anti-influenza virus antibiotic, 10-norparvulenone from Microsphaeropsis sp. FO-5050. J Antibiot 53:1215–1218

    Article  CAS  Google Scholar 

  • Ganassi S, De Cristofaro A, Grazioso P, Altomare C, Logrieco A, Sabatini MA (2007) Detection of fungal metabolites of various Trichoderma species by the aphid Schizaphis graminum. Entomol Exp Appl 122:77–86

    Article  Google Scholar 

  • Garnica-Vergara A, Barrera-Ortiz S, Muñoz-Parra E, Raya-González J, Méndez-Bravo A, Macías-Rodríguez L, Ruiz-Herrera LF, LÏŒpez-Bucio J (2016) The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol 209:1496–1512. https://doi.org/10.1111/nph.13725

    Article  CAS  PubMed  Google Scholar 

  • Geetha I, Paily KP, Padmanaban V, Balaraman K (2003) Oviposition response of the mosquito, Culex quinquefasciatus to the secondary metabolite(s) of the fungus, Trichoderma viride. Mem Inst Oswaldo Cruz, Rio de Janeiro 98(2):223–226

    Article  CAS  Google Scholar 

  • Ghanbarzadeh B, Safaie N, Goltapeh EM (2014) Antagonistic activity and hyphal interactions of Trichoderma spp. against Fusarium proliferatum and F. oxysporum in vitro. Arch Phytopathol Plant Protect 47(16):1979–1987. https://doi.org/10.1080/03235408.2013.864506

    Article  Google Scholar 

  • Ghisalberti EL, Rowland CY (1993) Antifungal metabolites from Trichoderma harzianum. J Nat Prod 56(10):1799–1804. https://doi.org/10.1021/np50100a020

    Article  CAS  PubMed  Google Scholar 

  • Guzmán-Guzmán P, Alemán-Duarte MI, Delaye L, Herrera-Estrella A, Olmedo-Monfil V (2017) Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism. BMC Genet 18(16). https://doi.org/10.1186/s12863-017-0481-y

  • Héraux FMG, Hallett SG, Ragothama KG, Weller SC (2005) Composted chicken manure as a medium for the production and delivery of Trichoderma virens for weed control. Hortscience 40(5):1394–1397

    Article  Google Scholar 

  • Hermosa R, Cardoza RE, Rubio MB, Gutiérrez S, Monte E (2014) Secondary metabolism and antimicrobial metabolites of Trichoderma. In: Gupta VG, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy M (eds) Biotechnology and biology of Trichoderma. Elsevier, Amsterdam, pp 125–138

    Chapter  Google Scholar 

  • Ishii T, Nonaka K, Suga T, Masuma R, ÅŒmura S, Shiomi K (2013) Cytosporone S with antimicrobial activity, isolated from the fungus Trichoderma sp. FKI-6626. Bioorg Med Chem Lett 23:679–681. https://doi.org/10.1016/j.bmcl.2012.11.113

    Article  CAS  PubMed  Google Scholar 

  • Javaid A, Ali S (2011a) Alternative management of a problematic weed of wheat Avena fatua l. by metabolites of Trichoderma. Chil J Agric Res 71(2):205–211

    Article  Google Scholar 

  • Javaid A, Ali S (2011b) Herbicidal activity of culture filtrates of Trichoderma spp. against two problematic weeds of wheat. Nat Prod Res 25(7):730–740. https://doi.org/10.1080/14786419.2010.528757

    Article  CAS  PubMed  Google Scholar 

  • Javaid A, Shafique G, Ali S, Shoaib A (2013) Effect of culture medium on herbicidal potential of metabolites of Trichoderma species against Parthenium hysterophorus. Int J Environ Agric Res 15(1):119–124

    CAS  Google Scholar 

  • Javid KJ, Mahdian S, Behboudi K, Alizadeh H (2016) Biological control of Fusarium oxysporum f. sp. radicis-cucumerinum by some Trichoderma harzianum isolates. Arch Phytopathol Plant Protect 49(17–18):471–484. https://doi.org/10.1080/03235408.2016.1242195

    Article  CAS  Google Scholar 

  • Jeerapong C, Phupong W, Bangrak P, Intana W, Tuchinda P (2015) Trichoharzianol, a new antifungal from Trichoderma harzianum F031. J Agri Food Chem 63(14):3704–3708

    Article  CAS  Google Scholar 

  • JeleÅ„ H, BÅ‚aszczyk L, CheÅ‚kowski J, Rogowicz K, Strakowska J (2014) Formation of 6-n-pentyl-2H-pyran-2-one (6-PAP) and other volatiles by different Trichoderma species. Mycol Prog 13:589–600

    Article  Google Scholar 

  • Jones RW, Hancock JG (1987) Conversion of viridin to viridiol by viridian-producing fungi. Can J Microbiol 33:963–966

    Article  CAS  PubMed  Google Scholar 

  • Keswani C (2015a) Ecofriendly management of plant diseases by biosynthesized secondary metabolites of Trichoderma spp. J Brief Idea. https://doi.org/10.5281/zenodo.15571

  • Keswani C (2015b) Strain of proteomics studies of thermotolerant Trichoderma spp. Ph.D. thesis, Banaras Hindu University, Varanasi

    Google Scholar 

  • Keswani C, Singh SP, Singh HB (2013) A superstar in biocontrol enterprise: Trichoderma spp. Biotech Today 3:27–30

    Article  Google Scholar 

  • Keswani C, Mishra S, Sarma BK, Singh SP, Singh HB (2014) Unraveling the efficient application of secondary metabolites of various Trichoderma. Appl Microbiol Biotechnol 98:533–544

    Article  CAS  PubMed  Google Scholar 

  • Keswani C, Bisen K, Singh V, Sarma BK, Singh HB (2016) Formulation technology of biocontrol agents: present status and future prospects. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations for sustainable agriculture. Springer, New Delhi, pp 35–52

    Google Scholar 

  • Kottb M, Gigolashvili T, Großkinsky DK, Piechulla B (2015) Trichoderma volatiles effecting arabidopsis from inhibition to protection against phytopathogenic fungi. Front Microbiol 6:995. https://doi.org/10.3389/fmicb.2015.00995

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuang W, Wang C, Mao W (2016) Screening and evaluation of herbicidal metabolites produced by Trichoderma spp. Afr J Microbiol Res 10(24):866–872

    Article  Google Scholar 

  • Lang BY, Li J, Zhou XX, Chen YH, Yang YH, Li XN, Zeng Y, Zhao PJ (2015) Koninginins L and M, two polyketides from Trichoderma koningii 8662. Phytochem Lett 11:1–4

    Article  CAS  Google Scholar 

  • Lee SYJ (2015) Analysis of volatile organic compounds emitted by filamentous fungi and volatile-mediated plant growth. Ph.D. thesis, The State University of New Jersey, p 220

    Google Scholar 

  • Lee DH, Kim JJ, Ryu KH, Kim BS, Ryu SM (2014) Novel antiviral composition, and method for controlling plant viruses by using same. WO patent WO2016089166

    Google Scholar 

  • Lee DH, Kim JJ, Ryu KH, Kim BS, Ryu SM (2017) Antiviral composition and method for controlling plant viruses using the same. US patent No. US20170265473A1

    Google Scholar 

  • Li HY, Luo Y, Zhang XS, Shi WL, Gong ZT, Shi M, Chen LL, Chen XL, Zhang YZ, Song XY (2014) Trichokonins from Trichoderma pseudokoningii SMF2 induce resistance against Gram-negative Pectobacterium carotovorum subsp. carotovorum in Chinese cabbage. FEMS Microbiol Lett 354(1):75–82. https://doi.org/10.1111/1574-6968.12427

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Sun R, Yu J, Saravanakumar K, Chen J (2016) Antagonistic and biocontrol potential of Trichoderma asperellum ZJSX5003 against the maize stalk rot pathogen Fusarium graminearum. Indian J Microbiol 56(3):318–327. https://doi.org/10.1007/s12088-016-0581-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Y, Zhang DD, Dong XW, Zhao PB, Chen LL, Song XY, Wang XJ, Chen XL, Shi M, Zhang YZ (2010) Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Microbiol Lett 313(2):120–126. https://doi.org/10.1111/j.1574-6968.2010.02135.x

    Article  CAS  PubMed  Google Scholar 

  • Mallaiah B, Rajinikanth E, Muthamilan M (2016) Isolation and identification of secondary metabolites produced by Trichoderma viride inhibiting the growth of Fusarium in Carnatum (desm.) sacc. incitant of crossandra wilt. The Bioscan 11(3):1525–1529

    CAS  Google Scholar 

  • Marques E, Martins I, de SCM M (2018) Antifungal potential of crude extracts of Trichoderma spp. Biota Neotropica 18(1):e20170418. https://doi.org/10.1590/1676-0611-BN-2017-0418

    Article  Google Scholar 

  • Mohammed AM, AL-Ani LKT, Bekbayeva L, Salleh B (2011) Biological control of Fusarium oxysporum f. sp. cubense by Pseudomonas fluorescens and BABA in vitro. World Appl Sci J 15(2):189–191

    Google Scholar 

  • Mohammed AM, Negim E-S, Al-Ani LKT, Salleh B, Saleh MI (2012) Utilization of amino-azines polymers as antifungal activity for banana. 1st USM – KAZNU International Conference on: Challenges of Teaching and Chemistry Research in Institutions of Higher Learning, 11-13 July, p 29

    Google Scholar 

  • Mohammed AM, Al-Ani LKT, Salleh B (2013) Potential management of Fusarium oxysporumf. sp. cubense, the banana wilt pathogen by using pseudomonas and beta-amino-butyric acid (BABA). International Symposium on Tropical Fungi, ISTF, IPB International Convention Center, Bogor. Indonesia 09(/2013):37

    Google Scholar 

  • Mohammed AM, Al-Ani LKT, Salleh B, Ghazali, AMA (2014) Determining plant growth promoting and biocontrol factor of bacterial culture media. The 3rd confernce on Pests management, Crop Protection Research Centre, Sudan, 3-4 February, p 103

    Google Scholar 

  • Moosa A, Sahi ST, Haq IU, Farzand A, Khan SA, Javaid K (2017) Antagonistic potential of Trichoderma isolates and manures against fusarium wilt of tomato. Int J Veg Sci 23(3):207–218. https://doi.org/10.1080/19315260.2016.1232329

    Article  Google Scholar 

  • More SA, Gachande BD (2017) Toxic effect of secondary metabolites secreted by rhizospheric fungi isolated from Bt-cotton. Int J Bot Stud 2(4):93–95

    Google Scholar 

  • Mukherjee M, Mukherjee PK, Kale SP (2007) cAMP signalling is involved in growth, germination, mycoparasitism and secondary metabolism in Trichoderma virens. Microbiology 153:1734–1742

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (2013) Trichoderma: biology and applications. CABI, Boston, p 327

    Book  Google Scholar 

  • Muthukumar A, Eswaran A, Sanjeevkumas K (2011) Exploitation of Trichoderma species on the growth of Pythium aphanidermatum in Chilli. Braz J Microbiol 42(4):1598–1607. https://doi.org/10.1590/S1517-838220110004000047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagamani P, Bhagat S, Biswas MK, Viswanath K (2017) Effect of volatile and non volatile compounds of Trichoderma spp. against soil borne diseases of chickpea. Int J Curr Microbiol App Sci 6(7):1486–1491. https://doi.org/10.20546/ijcmas.2017.607.177

    Article  CAS  Google Scholar 

  • Nguyen QT, Ueda K, Kihara J, Ueno M (2016) Culture filtrates of Trichoderma isolate H921 inhibit Magnaporthe oryzae spore germination and blast lesion formation in rice. Adv Microbiol 6:521–527. https://doi.org/10.4236/aim.2016.67052

    Article  CAS  Google Scholar 

  • Nieto-Jacobo MF, Steyaert JM, Salazar-Badillo FB, Nguyen DV, Rostás M, Braithwaite M, De Souza JT, Jimenez-Bremont JF, Ohkura M, Stewart A, Mendoza-Mendoza A (2017) Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front Plant Sci 8:102. https://doi.org/10.3389/fpls.2017.00102

    Article  PubMed  PubMed Central  Google Scholar 

  • Nitao JK, SLF M, Chitwood DJ (1999) In vitro assays of Meloidogyne incognita and heterodera glycines for detection of nematode-antagonistic fungal compounds. J Nematol 31:172–183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nor Azliza I, Hafizi R, Nurhazrati M, Salleh B (2014) Production of major mycotoxins by Fusarium species isolated from wild grasses in peninsular Malaysia. Sains Malaysiana 43(1):89–94

    Google Scholar 

  • Oloo J (2013). Evaluation of local Trichoderma isolates for their efficiency in biological control of Fusarium oxysporum f. sp phaseoli in common bean. M.S. thesis, University of Nairobi, pp 100

    Google Scholar 

  • Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M et al (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci U S A 98:12215–12220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortuño N, Castillo JA, Miranda C, Claros M, Soto X (2017) The use of secondary metabolites extracted from Trichoderma for plant growth promotion in the Andean highlands. Renew Agr Food Syst 32(4):366–375

    Article  Google Scholar 

  • Perveen K, Bokhari NA (2012) Antagonistic activity of Trichoderma harzianum and Trichoderma viride isolated from soil of date palm field against Fusarium oxysporum. African J Microbiol Res 6(13):3348–3353. https://doi.org/10.5897/AJMR12.247

    Article  Google Scholar 

  • Raza W, Faheem M, Yousaf S, FU R, Yameen M (2013) Volatile and non-volatile antifungal compounds produced by Trichoderma harzianum SQR-T037 suppressed the growth of Fusarium oxysporum f. sp. niveum. Sci Lett 1(1):21–24

    Google Scholar 

  • Rebuffat S, Goulard C, Bodo B (1995) Antibiotic peptides from Trichoderma harzianum: harzianins HC, proline-rich 14-residue peptaibols. J Chem Soc Perkin 1:1849–1855

    Article  Google Scholar 

  • Reddy BN, Saritha KV, Hindumathi A (2014) In vitro screening for antagonistic potential of seven species of Trichoderma against different plant pathogenic fungi. Res J Biol 2:29–36

    Google Scholar 

  • Rubio MB, Pardal AJ, Cardoza RE, Gutiérrez S, Monte E, Hermosa R (2017) Involvement of the transcriptional coactivator ThMBF1 in the biocontrol activity of Trichoderma harzianum. Front Microbiol 8:2273. https://doi.org/10.3389/fmicb.2017.02273

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu SM, Lee HM, Song EG, Seo YH, Lee J, Guo Y, Kim BS, Kim JJ, Hong JS, Ryu KH, Lee D (2017) Antiviral activities of trichothecenes isolated from Trichoderma albolutescens against pepper mottle virus. J Agri Food Chem 65(21):4273–4279. https://doi.org/10.1021/acs.jafc.7b01028

    Article  CAS  Google Scholar 

  • Scarselletti R, Faull JL (1994) In vitro activity of 6-pentyl-α-pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycol Res 98:1207–1209

    Article  CAS  Google Scholar 

  • SchirmbÓ§ck M, Lorito M, Wang YL, Hayes CK, Arisan-Atac I, Scala F, Harman GE, Kubicek CP (1994) Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Appl Environ Microbiol 60:4364–4370

    Google Scholar 

  • Selim KA, El-Beih AA, Abd El-Rahman TM, El-Diwany AI (2012) Biology of endophytic fungi. Curr Res Environ Appl Mycol 2(1):31–82. https://doi.org/10.5943/cream/2/1/3

    Article  Google Scholar 

  • Shakeri J, Foster HA (2007) Proteolytic activity and antibiotic production by Trichoderma harzianum in relation to pathogenicity to insects. Enzym Microb Technol 40:961–968. https://doi.org/10.1016/j.enzmictec.2006.07.041

    Article  CAS  Google Scholar 

  • Sharfuddin C, Mohanka R (2012) In vitro antagonism of indigenous Trichoderma isolates against phytopathogen causing wilt of lentil. Int J Life Sci Pharma Res 2(3):195–202

    Google Scholar 

  • Sharon E, Bar-Eyal M, Chet I, Herrera-Estrella A, Kleifeld O, Spiegel Y (2001) Biological control of root knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology 91(7):687–693

    Article  CAS  PubMed  Google Scholar 

  • Shentu XP, Liu XP, Zhan XH, Yu XP, Zhang CX (2013) The elicitation effect of pathogenic fungi on trichodermin production by Trichoderma brevicompactum. Sci World J 2013:6

    Article  CAS  Google Scholar 

  • Shentu X, Zhan X, Ma Z, Yu X, Zhang C (2014) Antifungal activity of metabolites of the endophytic fungus Trichoderma brevicompactum from garlic. Braz J Microbiolo 45(1):248–254. https://doi.org/10.1590/S1517-83822014005000036

    Article  Google Scholar 

  • Shentu XP, Yuan XF, Liu WP, Xu JF, Yu XP (2015) Cloning and functional analysis of tri14 in Trichoderma brevicompactum. Am J Mol Biol 11(3):169–175

    CAS  Google Scholar 

  • Shi M, Chen L, Wang XW, Zhang T, Zhao PB, Song XY, Sun CY, Chen XL, Zhou BC, Zhang YZ (2012) Antimicrobial peptaibols from Trichoderma pseudokoningii induce programmed cell death in plant fungal pathogens. Microbiology 158:166–175

    Article  CAS  PubMed  Google Scholar 

  • Shi XS, Wang DJ, Li XM, Li HL, Meng LH, Li X, Pi Y, Zhou XW, Wang BG (2017) Antimicrobial polyketides from Trichoderma koningiopsis QA-3, an endophytic fungus obtained from the medicinal plant Artemisia argyi. RSC Adv 7:51335–51342

    Article  CAS  Google Scholar 

  • Singh S, Dureja P, Tanwar RS, Singh A (2005) Production and antifungal activity of secondary metabolites of Trichoderma virens. Pestic Res J 17:26–29

    CAS  Google Scholar 

  • Singh HB, Sarma BK, Keswani C (eds) (2016) Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, Singapore. p 336. ISBN-13: 978-9811025754

    Google Scholar 

  • Singh HB, Sarma BK, Keswani C (eds) (2017) Advances in PGPR. CABI, Boston. p 408. ISBN-9781786390325

    Google Scholar 

  • Tapwal A, Thakur G, Tyagi A (2011) In-vitro evaluation of Trichoderma species against seed borne pathogens. IJCBS Res Pap 1(10):14–19

    Google Scholar 

  • Tarus PK, Lang’at-Thoruwa CC, Wanyonyi AW, Chhabra SC (2003) Bioactive metabolites from Trichoderma harzianum and Trichoderma longibrachiatum. Bull Chem Soc Ethiop 17(2):185–190

    CAS  Google Scholar 

  • Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148. https://doi.org/10.1111/j.1472-765X.2006.01939.x

    Article  CAS  PubMed  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86. https://doi.org/10.1016/j.pmpp.2008.05.005

    Article  CAS  Google Scholar 

  • Vinale F, Ghisalberti EL, Sivasithamparam K, Marra R, Ritieni A, Ferracane R, Woo S, Lorito M (2009a) Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Lett Appl Microbiol 48:705–711. https://doi.org/10.1111/j.1472-765X.2009.02599.x

    Article  CAS  PubMed  Google Scholar 

  • Vinale F, Flematti G, Sivasithamparam K, Lorito M, Marra R, Skelton BW, Ghisalberti EL (2009b) Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Nat Prod 72(11):2032–2035. https://doi.org/10.1021/np900548p

    Article  CAS  PubMed  Google Scholar 

  • Vinale F, Manganiello G, Nigro M, Mazzei P, Piccolo A, Pascale A, Ruocco M, Marra R, Lombardi N, Lanzuise S, Varlese R, Cavallo P, Lorito M, Woo SL (2014) A novel fungal metabolite with beneficial properties for agricultural applications. Molecules 19:9760–9772. https://doi.org/10.3390/molecules19079760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu SH, Zhao LX, Chen YW, Huang R, Miao CP, Wang J (2011) Sesquiterpenoids from the endophytic fungus Trichoderma sp. PR-35 of Paeonia delavayi. Chem Biodivers 8:1717–1722

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Sun R, Ni M, Yu J, Li Y, Yu C, Dou K, Ren J, Chen J (2017) Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. PLoS One 12(6):e0179957. https://doi.org/10.1371/journal.pone.0179957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ZS, Li GH, Zhao PJ, Zheng X, Luo SL, Li L, Niu XM, Zhang KQ (2010) Nematicidal activity of Trichoderma spp. and isolation of an active compound. World J Microbiol Biotechnol 26:2297–2302. https://doi.org/10.1007/s11274-010-0410-y

    Article  CAS  Google Scholar 

  • Yang Z, Yu Z, Lei L, Xia Z, Shao L, Zhang K, Li G (2012) Nematicidal effect of volatiles produced by Trichoderma sp. J Asia Pac Entomol 15:647–650

    Article  CAS  Google Scholar 

  • Yoshioka Y, Ichikawa H, Naznin HA, Kogure A, Hyakumachi M (2011) Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice. Pest Manag Sci 68:60–66

    Article  PubMed  CAS  Google Scholar 

  • Zeilinger S, Omann M (2007) Trichoderma biocontrol: signal transduction pathways involved in host sensing and mycoparasitism. Gene Regul Sys Biol 1:227–234

    Google Scholar 

  • Zeilinger S, Gruber S, Bansal R, Mukherjee PK (2016) Secondary metabolism in Trichoderma. Chemistry meets genomics. Fungal Biol Rev 30:74–90

    Article  Google Scholar 

  • Zhang F, Yang X, Ran W, Shen Q (2014) Fusarium oxysporum induces the production of proteins and volatile organic compounds by Trichoderma harzianum T-E5. FEMS Microbiol Lett 359:116–123. https://doi.org/10.1111/1574-6968.12582

    Article  CAS  PubMed  Google Scholar 

  • Zhou XX, Li J, Yang YH, Zeng Y, Zhao PJ (2014) Three new koninginins from Trichoderma neokongii 8722. Phytochem Lett 8:137–140. https://doi.org/10.1016/j.phytol.2014.03.004

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Ani, L.K.T. (2019). Bioactive Secondary Metabolites of Trichoderma spp. for Efficient Management of Phytopathogens. In: Singh, H., Keswani, C., Reddy, M., Sansinenea, E., García-Estrada, C. (eds) Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms. Springer, Singapore. https://doi.org/10.1007/978-981-13-5862-3_7

Download citation

Publish with us

Policies and ethics