Skip to main content

Spring Properties of Tires

  • Chapter
  • First Online:
  • 2517 Accesses

Abstract

The spring properties of tires are the most fundamental characteristics of tires and are closely related to the four fundamental functions discussed in Sect. 1.1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Problem 6.1.

  2. 2.

    See Footnote 1.

  3. 3.

    Problem 6.2.

  4. 4.

    Note 6.1.

  5. 5.

    Note 6.2.

  6. 6.

    Problem 6.3.

  7. 7.

    Note 6.3.

  8. 8.

    Problem 6.4.

  9. 9.

    Problem 6.5.

  10. 10.

    See Footnote 10.

  11. 11.

    See Footnote 10.

  12. 12.

    Problem 6.6.

  13. 13.

    See Footnote 12.

  14. 14.

    See Footnote 12.

  15. 15.

    Problem 6.7.

References

  1. J. Rotta,” Zur Statik des Luftreifens”, Ing. Archiv, p. 129, (1949)

    Google Scholar 

  2. R.N. Dodge, S.K. Clark, Fore-aft stiffness characteristics of pneumatic tires. Tire Sci. Technol. 2(2), 79–101 (1974)

    Article  Google Scholar 

  3. H. Sakai, Tire Engineering (in Japanese), (Guranpuri-Shuppan) (1987)

    Google Scholar 

  4. S. Yamazaki, T. Akasaka, Twisting stiffness and lateral vibration of a radial tire sidewall. Tire Sci. Technol. 16(4), 223–248 (1988)

    Google Scholar 

  5. S. Yamazaki, in Study on Spring Characteristics of Radial Tires (in Japanese), Ph. D. Thesis, (Chuo University, 1987)

    Google Scholar 

  6. T. Akasaka et al., An approximation evaluation of rotational stiffness of radial tire. Trans. JSCM 10(1), 24–31 (1984)

    Google Scholar 

  7. T. Akasaka, S. Yamazaki, Analytical study on radial stiffness of radial tire (in Japanese). Nippon Gomu Kyokaishi 59(7), 413–417 (1986)

    Article  Google Scholar 

  8. S. Yamazaki et al., Lateral stiffness of radial tyres and effect of lowering aspect ratio. Int. J. Vehicle Des. 9(3), 318–333 (1988)

    Google Scholar 

  9. F. Koutny, Load-deflection curves for radial tyres. Appl. Math. Model. 5, 422–427 (1981)

    Article  Google Scholar 

  10. F. Koutny, Geometry and Mechanics of Pneumatic Tires. www.koutny-math.com/?download=TIRES.pdf (2007)

  11. J.M. Muggleton et al., Vibrational response prediction of a pneumatic tyre using an orthotropic two-plate wave model. J. Sound Vib. 264, 929–950 (2003)

    Article  Google Scholar 

  12. S.K. Clark (ed.), Mechanics of Pneumatic Tires, (U.S. Government Printing Office, 1970) p. 698

    Google Scholar 

  13. J.E. Adkins, Cylindrically symmetrical deformations of incompressible elastic materials reinforced with inextensible cords. J. Rational Mech. Analysis 5(1), 189–202 (1956)

    MathSciNet  MATH  Google Scholar 

  14. T. Akasaka et al., Deformation analysis of a radial tire loaded on a crossbar. Tire Sci. Technol. 21(1), 40–63 (1993)

    Article  Google Scholar 

  15. S. Kagami, et al., Analysis of the contact deformation of a radial tire with camber angle. Tire Sci. Technol. 23(1), 26–51 (1995)

    Google Scholar 

  16. S. Kagami, in Study on Structural Mechanics of Deformation of Radial tire in Contact (in Japanese), Ph.D. Thesis, (Chuo University, 1993)

    Google Scholar 

  17. V. L. Biderman, in Vehicle tire engineering (translated from Russian to Japanese), (Gendaikougakusha, 1979) p. 112

    Google Scholar 

  18. Bridgestone (ed.) Fundamentals and Application of Vehicle Tires (in Japanese), (Tokyo Denki University Press, 2008)

    Google Scholar 

  19. H. Nagai et al., Development of the FOA tool for tire stiffness supporting tire product design (in Japanese)”, in 27th JSME Computer and Mechanical Division Conference, vol. 19 (2014)

    Google Scholar 

  20. J.D. Walter et al., Advances in tire composite theory. Tire Sci. Technol. 1(2), 210–250 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Nakajima .

Notes

Notes

Note 6.1

Equation (6.13)

Because the length of the sidewall does not change after loading, it follows that

$$r\phi_{\text{s}} = const.$$
(6.178)

Differentiating Eq. (6.178) with respect to ϕs, we obtain

$${\text{d}}r/{\text{d}}\phi_{\text{s}} = - r/\phi_{\text{s}} .$$
(6.179)

Using Eqs. (6.9) to (6.12), we obtain

$$K_{\text{p}} = 2\bar{K}_{\text{p}} = 2\frac{\partial P}{\partial x} = 2\frac{{\partial (pr\cos \phi_{\text{s}} )}}{{\partial (2r\sin \phi_{\text{s}} )}} = p\frac{{\frac{{\partial r\cos \phi_{\text{s}} }}{{\partial \phi_{\text{s}} }}}}{{\frac{{\partial r\sin \phi_{\text{s}} }}{{\partial \phi_{\text{s}} }}}} = p\frac{{\frac{\partial r}{{\partial \phi_{\text{s}} }}\cos \phi_{\text{s}} - r\sin \phi_{\text{s}} }}{{\frac{\partial r}{{\partial \phi_{\text{s}} }}\sin \phi_{\text{s}} + r\cos \phi_{\text{s}} }}.$$
(6.180)

The substitution of Eq. (6.179) into Eq. (6.180) yields

$$K_{\text{p}} = p\frac{{\cos \phi_{\text{s}} + \phi_{\text{s}} \sin \phi_{\text{s}} }}{{\sin \phi_{\text{s}} - \phi_{\text{s}} \cos \phi_{\text{s}} }}.$$
(6.181)

Pacejka [13] derived Eq. (6.13) taking the following approach. Referring to Fig. 6.64, the external vertical force acting on the segment is defined as

Fig. 6.64
figure 64

Force equilibrium of a tire

$$q_{z} = 2\int\limits_{0}^{b} {p_{z}\; {\text{d}}y} .$$
(6.182)

The force equilibrium in Fig. 6.64 yields

$$q_{z} /2 + T_{\text{s}} = p(r_{\text{s}} + b_{e} ).$$
(6.183)

Substituting the relation Ts = prs into Eq. (6.183), we obtain

$$q_{z} = 2pb_{e} ,$$
(6.184)

where 2be denotes the effective width indicated in Fig. 6.9. When the radial deflection is −w, it follows from Fig. 6.9 that

$$h_{s} = h_{s0} + w = l\sin \phi_{\text{s}} /\phi_{\text{s}} ,$$
(6.185)
$$2\left( {b - b_{e} } \right) = l\cos \phi_{\text{s}} /\phi_{\text{s}} .$$
(6.186)

Using Eqs. (6.184), (6.185) and (6.186), we obtain

$$K_{\text{P}} = - \frac{{{\text{d}}q_{z} }}{{{\text{d}}w}} = - 2p\left( {\frac{{{\text{d}}b_{e} }}{{{\text{d}}w}}} \right) = - 2p\left( {\frac{{{\text{d}}b_{e} /{\text{d}}\phi_{\text{s}} }}{{{\text{d}}w/{\text{d}}\phi_{\text{s}} }}} \right) = p\frac{{\cos \phi_{\text{s}} + \phi_{\text{s}} \sin \phi_{\text{s}} }}{{\sin \phi_{\text{s}} - \phi_{\text{s}} \cos \phi_{\text{s}} }}.$$
(6.187)

Note 6.2

Equation (6.19)

When the circumferential displacement at the tread is vD in Fig. 6.45, the shear strain at the sidewall is γ = vD/l, where l is the length of the sidewall. The reaction force per unit length in the circumferential direction at the tread is F = Gγh = GvDh/l. Hence, the structural component of the circumferential fundamental spring per unit length in the circumferential direction due to the sidewall rubber is given by

$$F/v_{\text{D}} = Gh/l.$$
(6.188)

Referring to Fig. 6.45, the tensile component of the circumferential fundamental spring is given by Nϕ(c)γ, where Nϕ(c) and γ are, respectively, given by Eqs. (6.122) and (6.126). Nϕ(c)γ is expressed as

$$N_{\phi } (c)\gamma = \frac{{p\left( {r_{\text{D}}^{2} - r_{\text{c}}^{2} } \right)}}{{2r\sin \phi_{\text{D}} }}\left( {\frac{v}{r} - \frac{{{\text{d}}v}}{{{\text{d}}r}}} \right)\cos \phi .$$
(6.189)

Neglecting the term dv/dr, Eq. (6.189) can be rewritten for r = rD as

$$N_{\phi } (c)\gamma = \frac{{p\left( {r_{\text{D}}^{2} - r_{\text{c}}^{2} } \right)v_{\text{D}} }}{{2r_{\text{D}}^{2} \tan \phi_{\text{D}} }}.$$
(6.190)

The tensile spring component is given by

$$\frac{{N_{\phi } (c)\gamma }}{{v_{\text{D}} }} = \frac{p}{{2\tan \phi_{\text{D}} }} - \left( {\frac{{r_{\text{c}} }}{{r_{\text{D}} }}} \right)^{2} \frac{p}{{2\tan \phi_{\text{D}} }}.$$
(6.191)

ϕD in Fig. 6.45 corresponds to ϕs in Fig. 6.9. If (rC/rD)2 is neglected, adding Eqs. (6.188) and (6.191) and considering two sidewalls, we obtain

$$k_{\text{t}} = 2Gh/l + p/\tan \phi_{\text{s}} .$$
(6.192)

Note 6.3

Equation (6.108)

When the neutral plane is located at the middle of the bead filler with thickness h, the flexural rigidity Dϕ is equal to \({{E_{\text{m}} h^{3} } \mathord{\left/ {\vphantom {{E_{\text{m}} h^{3} } {\left\{ {12\left( {1 - \nu_{\text{m}}^{2} } \right)} \right\}}}} \right. \kern-0pt} {\left\{ {12\left( {1 - \nu_{\text{m}}^{2} } \right)} \right\}}}\). Meanwhile, when the neutral plane is located on the carcass with thickness h, the flexural rigidity Dϕ is equal to \({{E_{\text{m}} h^{3} } \mathord{\left/ {\vphantom {{E_{\text{m}} h^{3} } {\left\{ {3\left( {1 - \nu_{\text{m}}^{2} } \right)} \right\}}}} \right. \kern-0pt} {\left\{ {3\left( {1 - \nu_{\text{m}}^{2} } \right)} \right\}}}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakajima, Y. (2019). Spring Properties of Tires. In: Advanced Tire Mechanics. Springer, Singapore. https://doi.org/10.1007/978-981-13-5799-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5799-2_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5798-5

  • Online ISBN: 978-981-13-5799-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics