Skip to main content

Traction Performance of Tires

  • Chapter
  • First Online:
Advanced Tire Mechanics

Abstract

The traction performance of a tire is important to the safety of a vehicle. Traction models of a tire have been proposed for different road conditions, such as dry, wet, snowy, icy and muddy conditions. Simple analytical models for tire traction in braking and driving have been developed by extending the Fiala model of cornering performance. One is a model where the contact pressure distribution does not change under braking and driving forces and the sliding point between the adhesion and sliding regions can be determined using a simple equation. Another is a model where the contact pressure distribution changes under braking and driving forces and the sliding point between adhesion and sliding regions can be determined by iterative calculation. The hydroplaning phenomenon is analyzed employing the equilibrium of the hydrodynamic pressure and tire load, the two-dimensional Reynolds equation for squeezing water out of the tread block and computational fluid dynamics (CFD) simulation where a tire is modeled by FEA and water is modeled using the finite volume method (FVM). The snow reaction is analyzed using an analytical model where the shear strength of snow is determined from the density of snow and conducting CFD simulation in an approach similar to that adopted for hydroplaning. The traction on ice is analyzed using a brush model with a friction model on ice where the friction coefficient is a function of the sliding velocity and other parameters of thermodynamics, and another brush model where the shear force distribution of a freely rolling tire is included. The traction on mud is analyzed using an analytical model where the tire deformation is classified as being in a rigid mode or elastic mode according to the difference between tire rigidity and load retention properties of mud, and CFD simulation is conducted in a manner similar to that adopted for hydroplaning. FEA has recently become popular in the design of the tire pattern for traction on wet, snowy and muddy road conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note 12.1.

  2. 2.

    Note 12.2.

  3. 3.

    See Footnote 2.

  4. 4.

    Same form as Eq. (11.64).

  5. 5.

    Note 12.3.

  6. 6.

    See Footnote 5.

  7. 7.

    See Footnote 5.

  8. 8.

    Note 12.4.

  9. 9.

    See Footnote 8.

  10. 10.

    See Footnote 8.

  11. 11.

    Note 12.5.

  12. 12.

    Note 12.6.

  13. 13.

    Note 12.7.

  14. 14.

    See Footnote 12.

  15. 15.

    See Footnote 12.

  16. 16.

    The Reynolds equation is explained in Note 12.8.

  17. 17.

    Note 12.8.

  18. 18.

    See Footnote 17.

  19. 19.

    Note 12.9.

  20. 20.

    Note 12.10.

References

  1. E. Fiala, Seitenkrafte am rollenden Luftreifen. VDI Z. 96 (1954)

    Google Scholar 

  2. N. Miyashita et al., Analytical model of my–S curve using generalized skewed-parabola. JSAE Rev. 24, 87–92 (2003)

    Article  Google Scholar 

  3. S. Yamazaki et al., A study on braking and driving properties of automotive tires. Int. J. Automot. Eng. 23(2), 97–102 (1992) (in Japanese)

    MathSciNet  Google Scholar 

  4. S. Yamazaki, Mechanics of myu-S characteristics of tire and its application. Nippon Gomu Kyokaishi 74(4), 143–147 (2001) (in Japanese)

    Article  Google Scholar 

  5. S. Yamazaki et al., Relationship between fore–aft stiffness of studless tire and hill-climbing performance. Nippon Gomu Kyokaishi 70, 608–617 (1997) (in Japanese)

    Article  Google Scholar 

  6. K. Araki, H. Sakai, Theoretical study on tractive and braking characteristics of tire. Trans. JSAE, No. 9122125 (1991) (in Japanese)

    Google Scholar 

  7. S. Yamazaki, Structural mechanics of tire and braking performance. Nippon Gomu Kyokaishi 80(4), 147–152 (2007) (in Japanese)

    Article  Google Scholar 

  8. J. Adcox et al., Interaction of anti–lock braking systems with tire torsional dynamics. Tire Sci. Technol. 40(3), 171–185 (2012)

    Google Scholar 

  9. J.R. Anderson et al., Interaction of a slip-based antilock braking system with tire torsional dynamics. Tire Sci. Technol. 43(3), 182–194 (2015)

    Google Scholar 

  10. J.R. Cho et al., Estimation of dry road braking distance considering frictional energy of patterned tires. Finite Elem. Anal. Des. 42, 1248–1257 (2006)

    Article  Google Scholar 

  11. T. Hosome, et al., Experimental study of ABS performance from the viewpoint of tire characteristics, in Proceedings of the JSAE Conference, Paper No. 9941232 (1994) (in Japanese)

    Google Scholar 

  12. B.J. Albert, J.C. Walker, Tyre to wet road friction. Proc. Inst. Mech. Eng. 180, 105 (1965–1966)

    Google Scholar 

  13. B.J. Allbert, Tires and hydroplaning. SAE Paper, No. 680140 (1968)

    Google Scholar 

  14. R.W. Yeager, J.L. Tuttle, Testing and analysis of tire hydroplaning. SAE Paper, No. 720471 (1972)

    Google Scholar 

  15. W.B. Horner, U.T. Joyner, Pneumatic tire hydroplaning and some effects on vehicle performance. SAE Paper, No. 970C (1965)

    Google Scholar 

  16. A.L. Browne, Tire deformation during dynamic hydroplaning. Tire Sci. Technol. 3(1), 16–28 (1975)

    Article  Google Scholar 

  17. H. Sakai, et al., The effect of hydroplaning on the dynamic characteristics of car, truck and bus tires. SAE Paper, No. 780195 (1978)

    Google Scholar 

  18. M. Yagita et al., Effects of a ground plate on magnus effect of a rotating cylinder. Trans. JSME B 62(596), 1294–1299 (1996) (in Japanese)

    Article  Google Scholar 

  19. H. Sakai, Tire Engineering (Guranpuri-Shuppan, 1987) (in Japanese)

    Google Scholar 

  20. T. Akasaka, M. Takayama, A study on hydroplaning. Bull. Facul. Sci. Eng. Chuo Univ. 17, 27–40 (1974)

    Google Scholar 

  21. D.F. Moore, The Friction of Pneumatic Tyres (Elsevier Scientific Publishing Company, Amsterdam, 1975)

    Google Scholar 

  22. D.F. Hays, A.L. Browne (eds.), The Physics of Tire Traction—Theory and Experiment (Plenum Press, 1974)

    Google Scholar 

  23. D.F. Moore, On the inclined non-inertial sinkage of a flat plate. J. Fluid Mech. 20, 321 (1964)

    Article  Google Scholar 

  24. D. Whicker et al., Some effect of inclination on elastohydrodynamic squeeze film problems. J. Fluid Mech. 78, 247–260 (1976)

    Article  MATH  Google Scholar 

  25. S.K. Agrawall, J.J. Henry, A simple tire deformation model for the transient aspect for hydroplaning. Tire Sci. Technol. 8(3–4), 23 (1980)

    Article  Google Scholar 

  26. D.F. Moore, A review of squeeze films. Wear 8, 245–263 (1965)

    Article  Google Scholar 

  27. D.F. Moore, A theory of viscous hydroplaning. Int. J. Mech. Sci. 9, 797–810 (1967)

    Article  Google Scholar 

  28. R.J. Boness, A theoretical treatment of the aquaplaning tyre. Automob. Eng., 260–264 (1968)

    Google Scholar 

  29. A.L. Browne et al., Dynamic hydroplaning of pneumatic tires. Wear 20, 1–28 (1972)

    Article  Google Scholar 

  30. A.L. Browne, Computer-aided prediction of the effect of tire tread pattern design on thick film wet traction. Research Publication, GMR-2487 (1977)

    Google Scholar 

  31. A.L. Browne, Predicting the effect of tire tread pattern design on thick film wet traction. Tire Sci. Technol. 5(6), 6–28 (1977)

    Article  Google Scholar 

  32. A.L. Browne et al., The significance of tread element flexibility to film wet traction. Tire Sci. Technol. 3(4), 215–234 (1975)

    Article  Google Scholar 

  33. S.M. Rohde, On the combined effects of tread element flexibility and pavement microstructure on thin film wet traction. SAE Paper, No. 770277 (1977)

    Google Scholar 

  34. A.L. Browne, D. Whicker, Design of thin tread elements for optimum thin film wet traction. SAE Paper, No. 770278 (1977)

    Google Scholar 

  35. K.S. Lee, Effects of sipes on the viscous hydroplaning of pneumatic tires. Tire Sci. Technol. 26(1), 23–35 (1998)

    Article  Google Scholar 

  36. S.K. Clark (eds.), Mechanics of Pneumatic Tires (U.S. Government Printing Office, 1971)

    Google Scholar 

  37. W.E. Meyer, Looking at the trouble spot where the rubber meets the road. SAE J. 72, 36–40 (1964)

    Google Scholar 

  38. M. Okamura, T. Someya, Research of hydroplaning (1). Trans. JSME 43(374), 3932–3943 (1977) (in Japanese)

    Article  Google Scholar 

  39. M. Okamura, T. Someya, Research of hydroplaning (2). Trans. JSME 43(374), 3944–3953 (1977) (in Japanese)

    Article  Google Scholar 

  40. H. Grogger, M. Weiss, Calculation of the three-dimensional free surface flow around an automobile tire. Tire Sci. Technol. 24(1), 39–49 (1996)

    Article  Google Scholar 

  41. H. Grogger, M. Weiss, Calculation of the hydroplaning of a deformable smooth-shaped and longitudinally-grooved tire. Tire Sci. Technol. 25(4), 265–287 (1997)

    Article  Google Scholar 

  42. E. Seta et al., Hydroplaning analysis by FEM and FVM: effect of tire rolling and tire pattern on hydroplaning. Tire Sci. Technol. 28(3), 140–156 (2000)

    Article  Google Scholar 

  43. Y. Nakajima, Numerical simulation of tire traction on various road conditions. Rubber Chem. Technol. 80(3), 412–435 (2007)

    Article  Google Scholar 

  44. Y. Nakajima, Hydroplaning analysis by FEM and FVM: effect of tire rolling and tire pattern on hydroplaning. Int. J. Automot. Technol. 1(1), 26–34 (2000)

    Google Scholar 

  45. MSC.Dytran User’s Manual, MSC Software Corporation (2002)

    Google Scholar 

  46. US 6,430,993 B1

    Google Scholar 

  47. T.W. Kim, H.Y. Jeong, Hydroplaning simulations for tires using FEM, FVM and an asymptotic method. Int. J. Automot. Technol. 11, 901–908 (2010)

    Article  Google Scholar 

  48. S.S. Kumar et al., Study of hydroplaning risk on rolling and sliding passenger car. Proc. Soc. Behav. Sci. 53, 1020–1028 (2012)

    Article  Google Scholar 

  49. T. Okano, M. Koishi, A new computational procedure to predict transient hydroplaning performance of a tire. Tire Sci. Technol. 29(1), 2–22 (2001)

    Article  Google Scholar 

  50. J.R. Cho et al., Braking distance prediction by hydroplaning analysis of 3-D patterned tire model. J. Syst. Des. Dynam. 1, 298–409 (2007)

    Google Scholar 

  51. J.-T. Chiu, C.-R. Shui, Analysis of the wet grip characteristics of tire tread patterns. Tire Sci. Technol. 46(1), 2–15 (2018)

    Article  Google Scholar 

  52. Bridgestone, AQ DONUTS-II Technology Guide (2000)

    Google Scholar 

  53. S. Nishina, K. Ohoyama, Tire snow traction performance. JSAE J. 43(3), 42–46 (1989)

    Google Scholar 

  54. M. Tsukijihara, Tire cornering characteristics on snow and ice, in JSAE Symposium, No. 906501 (1990) (in Japanese)

    Google Scholar 

  55. T. Sakamoto, Y. Hirata, Development of studless tire (passenger tire). Nippon Gomu Kyokaishi 65, 713–720 (1992) (in Japanese)

    Article  Google Scholar 

  56. H. Tomoda, Y. Ishikawa, Development of studless tire (truck/bus tire). Nippon Gomu Kyokaishi 65, 721–730 (1992) (in Japanese)

    Article  Google Scholar 

  57. E. Hiroki, Evaluation of studless tire-I. Nippon Gomu Kyokaishi 65, 738–745 (1992) (in Japanese)

    Article  Google Scholar 

  58. K. Horiuchi, Evaluation of studless tire-II. Nippon Gomu Kyokaishi 65, 746–752 (1992) (in Japanese)

    Article  Google Scholar 

  59. E. Hiroki, On the cornering characteristics of studless tires for winter season with an ice and snow tires testing machine. JSAE J. 46(6), 108–113 (1992) (in Japanese)

    Google Scholar 

  60. H. Ueyama, Tire friction characteristics on snow and ice surface, in Proceedings of the JSAE Conference, No. 9631191, 1996 (in Japanese)

    Google Scholar 

  61. Y. Nakajima, Analytical model of longitudinal tire traction in snow. J. Terramech. 40(1), 63–82 (2004)

    Article  Google Scholar 

  62. Y. Nakajima, Study on snow traction (I). Technical report (Bridgestone Corporation, 1980) (in Japanese)

    Google Scholar 

  63. Y. Nakajima, Study on snow traction (II). Technical report (Bridgestone Corporation, 1981)

    Google Scholar 

  64. S. Ella et al., Investigation of rubber friction on snow for tyres. Tribol. Int. 59, 292–301 (2013)

    Article  Google Scholar 

  65. A.L. Brown, A study of vehicle performance in snow. J. Terramech. 16, 153–162 (1979)

    Article  Google Scholar 

  66. G.L. Blaisdell, W.L. Harrison, Measurement of snow surface and tire performance evaluation. SAE Paper, No. 820346 (1982)

    Google Scholar 

  67. T.R. Nesbitt, D.J. Barron, Prediction of driving traction performance on snow. SAE Paper, No. 800836 (1980)

    Google Scholar 

  68. G.P. Buchner, et al., Evaluation of empirical tread design predictions of snow traction as measured with a self-contained traction vehicle. SAE Paper, No. 820345 (1982)

    Google Scholar 

  69. W.R. Janowski, Tire traction testing in the winter environment. SAE Paper, No. 800839 (1980)

    Google Scholar 

  70. J.V. Kneip, et al., European winter tire testing. SAE Paper, No. 800837 (1980)

    Google Scholar 

  71. D.C. Domeck, Winter tire testing as seen by the independent tester. SAE Paper, No. 820344 (1982)

    Google Scholar 

  72. T. Muro, N.R. Yong, Rectangular plate loading test on snow. J. Jpn. Soc. Snow Ice 42, 17–24 (1980) (in Japanese)

    Article  Google Scholar 

  73. T. Muro, N.R. Yong, Vane cone test on snow. J. Jpn. Soc. Snow Ice 42, 25–32 (1980) (in Japanese)

    Article  Google Scholar 

  74. N. Maeno, T. Kuroda, Structure of Snow and Ice and Physical Properties (Kokinshoin, 1986) (in Japanese)

    Google Scholar 

  75. M. Salm, Mechanical properties of snow. Rev. Geophys. Phys. 20, 1–19 (1982)

    Article  Google Scholar 

  76. S.C. Colbeck, The kinetic friction of snow. J. Glaciol. 34(78), 28 (1988)

    Google Scholar 

  77. G. Meschke, A new viscoplastic model for snow at finite strains, in 4th International Conference on Computational Plasticity (Pineridge Press, 1995), p. 2295

    Google Scholar 

  78. G. Meschke, C.H. Liu, The Cam–Clay model at finite strains: algorithmic aspects and finite element analysis of snow, in Computer Methods and Advances in Geomechanics, Proceedings of the IACMAG 94 (1994), pp. 623–628

    Google Scholar 

  79. G. Meschke et al., Large strain finite element analysis of snow. J. Eng. Mech. ASCE 22, 591–602 (1996)

    Article  Google Scholar 

  80. R. Mundl et al., Friction mechanism of tread blocks on snow surfaces. Tire Sci. Technol. 25, 245–264 (1997)

    Article  Google Scholar 

  81. C.W. Fervers, Tyre and soft soil interaction-research with fem, in Proceedings of the FISITA Conference (Praque, 1996)

    Google Scholar 

  82. S. Shoop, et al., Snow-Tire FEA (Tire Technology International, 1999), pp. 20–25

    Google Scholar 

  83. I. Lahtinen, et al., Snow surface model for tyre performance simulation, in Proceedings of the FISITA Conference, Seoul, No. F2000G352 (2000)

    Google Scholar 

  84. E. Seta et al., Prediction of snow/tire interaction using explicit FEM and FVM. Tire Sci. Technol. 31(3), 173–188 (2003)

    Article  Google Scholar 

  85. J.H. Choi et al., Numerical investigation of snow traction characteristics of 3-D patterned tire. J. Terramech. 49, 81–93 (2012)

    Article  Google Scholar 

  86. T. Muro, N.R. Yong, On trafficability of tracked oversnow vehicle. J. Jpn. Soc. Snow Ice 42, 93–100 (1980) (in Japanese)

    Article  Google Scholar 

  87. T. Muro, N.R. Yong, On drawbar pull of tracked oversnow vehicle. J. Jpn. Soc. Snow Ice 42, 101–108 (1980) (in Japanese)

    Article  Google Scholar 

  88. M. Mellor, A review of basic snow mechanics, in International Symposium Snow Mechanics, vol. 114 (IAHS-AISH Publication, Grindelwald, Switzerland, 1974), pp. 251–291

    Google Scholar 

  89. M. Schneebeli et al., Measuring snow microstructure and hardness using high resolution penetrometer. Cold Reg. Sci. Technol. 30, 101–114 (1999)

    Article  Google Scholar 

  90. J.B. Johnson, M. Schneebeli, Characterizing the microstructural and micromechanical properties of snow. Cold Reg. Sci. Technol. 30, 91–100 (1999)

    Article  Google Scholar 

  91. J.C. Simo, Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comput. Meth. Appl. Mech. Eng. 99(1), 61–112 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  92. J.C. Simo, G. Meschke, A new class of algorithms for classical plasticity extended to finite strains: application to geomaterials. Comput. Mech. 11, 253–278 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  93. V.F. Petrenko, R.W. Whiteworth, Physics of Ice (Oxford University Press, 1999)

    Google Scholar 

  94. N. Maeno, Science of Ice (Hokkaido University Press, 1981) (in Japanese)

    Google Scholar 

  95. A.-M. Kietzig et al., Physics of ice friction. J. Appl. Phys. 107, 081101 (2010)

    Article  Google Scholar 

  96. F.P. Bowden, T.P. Hughes, The mechanism of sliding on ice and snow. Proc. R. Soc. Lond. A Math. 172, 0280–0298 (1939)

    Article  Google Scholar 

  97. A. Ahagon et al., Friction on ice. Rubber Chem. Technol. 61, 14–35 (1988)

    Article  Google Scholar 

  98. Y. Furukawa, Ice surface is melting! Why is it so slippy? JSME J. 112(1086), 402–405 (2009)

    Google Scholar 

  99. A.-M. Kietzig et al., Ice friction: the effects of surface roughness, structure, and hydrophobicity. J. Appl. Phys. 106, 024303 (2009)

    Article  Google Scholar 

  100. B. Barnes et al., The friction and creep of polycrystalline ice. Proc. R. Soc. Lond. A 324, 127–155 (1971)

    Article  Google Scholar 

  101. A. Doppenschmidt, Die Eisoberflache. Ph.D. thesis (Johannes-Gutenberg-Universitat, Mainz, 1999)

    Google Scholar 

  102. M. Nihei, Characteristics of tires on texture of iced road surface, in Proceedings of the JSAE Conference, No. 20084076 (2008)

    Google Scholar 

  103. M. Katayama, et al., Development of studless pattern by using PAM-CRASH, in PAM-CRASH User’s Conference (Tokyo, 2000) (in Japanese)

    Google Scholar 

  104. K. Mitsuhashi et al., Ice friction characteristics of studless tire. Nippon Gomu Kyokaishi 70, 140–146 (1997) (in Japanese)

    Article  Google Scholar 

  105. G. Skouvaklis et al., Friction of rubber on ice: a new machine, influence of rubber properties and sliding parameters. Tribo. Int. 49, 44–52 (2012)

    Article  Google Scholar 

  106. E. Hiroki, K. Horiuchi, Frictional force and edge effect of studless tires on ice surface, in JSAE Conference, No. 9437917 (1994)

    Google Scholar 

  107. E. Hiroki, Slip friction factor, amount of water formation and amount of drainage by sipe edge on ice, in JSAE Conference, No. 9731677 (1997)

    Google Scholar 

  108. K. Mitsuhashi et al., Comparison of the frictional property between studless-tires on icy road and inclined angle of sipes of small block. Nippon Gomu Kyokaishi 71, 626–631 (1998) (in Japanese)

    Article  Google Scholar 

  109. S. Yamazaki et al., Effect of number of sipes in tread block on the friction coefficient. JARI Res. J. 21, 31–34 (1999) (in Japanese)

    Google Scholar 

  110. S. Yamazaki, Tribology of tire. Nippon Gomu Kyokaishi 72, 229–235 (1999) (in Japanese)

    Article  Google Scholar 

  111. S. Yamazaki et al., Effects of the number of siping edges in a tire tread block on friction property and contact with an icy road. Tire Sci. Technol. 28(1), 58–69 (2000)

    Article  Google Scholar 

  112. Y. Ishikawa, Frictional property of tire-friction coefficient and characteristics of tread compound. Nippon Gomu Kyokaishi 70, 193–203 (1997) (in Japanese)

    Article  Google Scholar 

  113. S. Yamazaki, Mechanism of interfacial behavior between tire and ice. Nippon Gomu Kyokaishi 65, 731–737 (1992) (in Japanese)

    Article  Google Scholar 

  114. D.C.B. Evans et al., The kinetic friction of ice. Proc. R. Soc. Lond. A Math. 347, 493–512 (1976)

    Article  Google Scholar 

  115. P. Oksanen, J. Keinonen, The mechanism of friction on ice. Wear 78, 315–324 (1982)

    Article  Google Scholar 

  116. G.F. Hayhoe, C.G. Shapley, Tire force generation on ice. SAE Paper, No. 890028 (1989)

    Google Scholar 

  117. X.D. Peng, et al., A tire traction modeling for use in ice mobile. SAE Paper, No. 1999-01-0478 (1999)

    Google Scholar 

  118. X.D. Peng, et al., A new method for determining tire traction on ice. SAE Paper, No. 2000-01-1640 (2000)

    Google Scholar 

  119. M. Nihei, K. Shimizu, Effect of frictional heat in tire characteristics on ice friction model and experimental results of smooth tire, in JSAE Conference, No. 9437908 (1994)

    Google Scholar 

  120. M. Giessler et al., Influence of friction heat on tire traction on ice and snow. Tire Sci. Technol. 38(1), 4–23 (2010)

    Article  Google Scholar 

  121. K. Wiese et al., An analytical thermodynamic approach to friction of rubber on ice. Tire Sci. Technol. 40(2), 124–150 (2012)

    Google Scholar 

  122. K. Hofstetter et al., Sliding behaviour of simplified tire tread patterns investigated by means of FEM. Comput. Struct. 84, 1151–1163 (2006)

    Article  Google Scholar 

  123. A.K. Bhoopalam, C. Sandu, Review of the state of the art in experimental studies and mathematical modeling of tire performance on ice. J. Terramech. 53, 19–35 (2014)

    Article  Google Scholar 

  124. R.G. Pope, The effect of wheel speed on rolling resistance. J. Terramech. 8(1), 51–58 (1971)

    Article  MathSciNet  Google Scholar 

  125. Z. Wang, A.R. Reece, The performance of free rolling rigid and flexible wheels on sand. J. Terramech. 21(4), 347–360 (1984)

    Article  Google Scholar 

  126. J.Y. Wong, Behavior of soil beneath rigid wheels. J. Agr. Eng. Res. 12(4), 257–269 (1967)

    Article  Google Scholar 

  127. E.J. Windish, R.N. Yong, The determination of soil strain-rate behavior beneath a moving wheel. J. Terramech. 7(1), 55–67 (1970)

    Article  Google Scholar 

  128. M. Ueno, et al., A development of analyzing system for strain and stress of soil under the wheel, in Proceedings of the 10th International Conference of ISTVS (1990), pp. 265–276

    Google Scholar 

  129. K. Hashiguchi et al., Image processing on-line measurement for soil displacement. J. Jpn. Soc. Agr. Mach. 60(6), 11–18 (1998) (in Japanese)

    Google Scholar 

  130. J.Y. Wong, Theory of Ground Vehicles, 3rd edn. (Wiley, 2001)

    Google Scholar 

  131. J.Y. Wong, Terramechanics and Off-Road Vehicles (Elsevier, 1989)

    Google Scholar 

  132. M.G. Bekker, Theory of Land Locomotion (The University of Michigan Press, 1956)

    Google Scholar 

  133. M.G. Bekker, Off the Road Locomotion (The University of Michigan Press, Ann Arbor, 1960)

    Google Scholar 

  134. M.G. Bekker, Introduction to Terrain-Vehicle Systems (The University of Michigan Press, Ann Arbor, MI, 1969)

    Google Scholar 

  135. T. Muro, Terramechanics (Gihoudou-Shuppan, 1993) (in Japanese)

    Google Scholar 

  136. Terramechanics research group (ed.), Mechanics for Off-the-Road Tire (Terramechanics Research Group, 1999) (in Japanese)

    Google Scholar 

  137. J.Y. Wong, A.R. Reece, Prediction of rigid wheel performance based on the analysis of soil-wheel stresses, part I. Performance of driven rigid wheel. J. Terramech. 4(1), 81–98 (1967)

    Article  Google Scholar 

  138. J.Y. Wong, A.R. Reece, Prediction of rigid wheel performance based on the analysis of soil-wheel stresses, part II. Performance of towed rigid wheels. J. Terramech. 4(2), 7–25 (1967)

    Article  Google Scholar 

  139. R.G. Pope, The effect of sinkage rate on pressure sinkage relationships and rolling resistance in real and artificial clays. J. Terramech. 6(4), 31–38 (1969)

    Article  Google Scholar 

  140. D.G.- Clough, Selection of tyre sizes for agricultural vehicles. J. Agr. Eng. Res. 25(3), 261–271 (1980)

    Article  Google Scholar 

  141. H. Itoh, Study on the turning behavior of a 4WD–4WS tractor. Ph.D. thesis (Kyoto University, 1994)

    Google Scholar 

  142. Z. Janosi, B. Hanamoto, Analytical determination of drawbar pull as a function of slip for tracked vehicles in deformable soils, in Proceedings of the 1st International Conference on Terrain-Vehicle Systems (Turin, 1961)

    Google Scholar 

  143. V.V. Kacigin, V.V. Guskov, The basis of tractor performance theory. J. Terramechaics 5(3), 43–66 (1968)

    Article  Google Scholar 

  144. J.Y. Wong, J. Preston-Thomas, On the characterization of the shear stress-displacement relationship of Terrain. J. Terramech. 19(4), 225–234 (1983)

    Article  Google Scholar 

  145. AESCO (Automotive Engineering Software & Consulting), ORSIS (Off Road Systems Interactive Simulation), http://www.english.orsis.de/index.html

  146. AESCO (Automotive Engineering Software & Consulting), AS2TM, http://www.tire-soil.de/

  147. T. Hiroma et al., Finite element analysis for tractive performance of a rigid wheel (part 1), analysis using loading and unloading models of soil. J. Jpn. Soc. Agr. Mach. 61(1), 115–121 (1999) (in Japanese)

    Google Scholar 

  148. T. Hiroma et al., Finite element analysis for tractive performance of a rigid wheel (part 2), tractive performance and stress distribution in soil. J. Jpn. Soc. Agr. Mach. 61(1), 123–129 (1999) (in Japanese)

    Google Scholar 

  149. T. Hiroma et al., Analysis of the soil deformation beneath a wheel by finite element method (part 3), analysis considering the viscoelastic properties of soil. J. Jpn. Soc. Agr. Mach. 56(6), 3–10 (1994) (in Japanese)

    Google Scholar 

  150. N.H. Abu-Hamdeh, R.C. Reeder, Measuring and predicting stress distribution under tractive devices in undisturbed soils. Biosyst. Eng. 85(4), 493–502 (2003)

    Article  Google Scholar 

  151. G. Regli et al., Material laws as a basis for simulation models for the calculation of wheel-soil interaction examination using the finite element method. J. Terramech. 30(3), 165–179 (1993)

    Article  Google Scholar 

  152. C.H. Liu, J.Y. Wong, Numerical simulations of tire-soil interaction based on critical state soil mechanics. J. Terramech. 33(5), 209–221 (1996)

    Article  Google Scholar 

  153. S. Oida et al., Soil/tire interaction analysis using FEM and FVM. Tire Sci. Technol. 33(1), 38–62 (2005)

    Article  Google Scholar 

  154. M. Momotsu, et al., Simulation of interaction between soil and rotary blade by modified distinct element method, in Proceedings of the 7th European ISTVS Conference (Ferrara, 1997), pp. 572–579

    Google Scholar 

  155. A. Oida, et al., Simulation of soil deformation under a track shoe by the DEM, in Proceedings of the 7th European ISTVS Conference (Ferrara, 1997), pp. 155–162

    Google Scholar 

  156. H. Tanaka, et al., Simulation of soil deformation and resistance at bar penetration by the distinct element method, in Proceedings of the 12th International Conference of ISTVS (Beijing, 1996), pp. 21–28

    Google Scholar 

  157. H. Fujii, et al., Analysis of interaction between Lunar Terrain and Treaded Wheel by distinct element method, in Proceedings of the 14th International Conference of ISTVS (Vicksburg, MS, USA, 2002)

    Google Scholar 

  158. H. Nakashima, A. Oida, Algorithm and implementation of soil–tire contact analysis code based on dynamic FE-DE method, in Proceedings of the 14th International Conference of ISTVS (Vicksburg, MS, USA, 2002)

    Google Scholar 

  159. D.F. Moore, The Friction and Lubrication of Elastomers (Pergamon Press, Oxford, New York, 1972)

    Google Scholar 

  160. H.S. Carslaw, J.C. Jaeger, Conduction of Hear in Solids, 2nd edn. (Clarendon Press, 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Nakajima .

Notes

Notes

Note 12.1 Model of the Frictional Force Proposed by Moore [159]

Moore expressed a frictional force \(\widehat{F}_{\mu }\):

$$\hat{F}_{\mu } = F_{\text{adhesion}} + F_{\text{hysteresis}} + F_{\text{plough}} ,$$

where Fadhesion is the adhesive force between rubber and the road, Fhysteresis is the force due to the hysteresis of rubber, and Fplough is a plowing force that includes the force due to the fracture of rubber. Furthermore, coefficients of friction between the rubber and hard ground, such as a paved road, are

$$\begin{aligned} \mu_{\text{adhesion}} & = C_{1} K \cdot E^{\prime } /p^{r} \cdot \tan \delta \\ \mu_{\text{hysteresis}} & = C_{2} \cdot p/E^{\prime } \cdot \tan \delta , \\ \end{aligned}$$

where μadhesion is the friction coefficient related to the adhesive force, μhysteresis is the friction coefficient related to the hysteresis force, C1 and C2 are constants, K is the shear stress of the interface, p is the contact pressure, tan δ is the loss tangent of rubber, E´ is the storage Young’s modulus of rubber, and r is a constant with a value less than 1 discussed in Sect. 7.4. Referring to Eq. (7.138), Hertz theory gives the relation r = 1/3.

Note 12.2 Eqs. (12.15) and (12.16)

In Eq. (11.52), parameters are changed as C  CFs, tan α  sB and \(\delta^{\prime } = 0\) is then used in the derivation for Fx. Differentiating Fx with respect to sB, we obtain

$$\begin{aligned} \frac{{\text{d}F_{x} }}{{\text{d}s_{\text{B}} }} & = C_{Fs} s_{\text{B}} - \frac{{2C_{Fs}^{2} }}{{3\mu_{\text{s}} F_{z} }}\left( {2 - \frac{{\mu_{\text{d}} }}{{\mu_{\text{s}} }}} \right)s_{\text{B}} + \frac{{C_{Fs}^{3} }}{{9\mu_{\text{s}}^{2} F_{z}^{2} }}\left( {3 - 2\frac{{\mu_{\text{d}} }}{{\mu_{\text{s}} }}} \right)s_{\text{B}}^{2} = 0\\ &\to \left\{ {\frac{{C_{Fs} }}{{3\mu_{\text{s}} F_{z} }}\left( {3 - 2\frac{{\mu_{\text{d}} }}{{\mu_{\text{s}} }}} \right)s_{\text{B}} - 1} \right\}\left( {\frac{{C_{Fs} }}{{3\mu_{\text{s}} F_{z} }}s_{\text{B}} - 1} \right) = 0 \\ & \to s_{\text{B}} = \frac{{3\mu_{\text{s}} F_{z} }}{{C_{Fs} }}\frac{{\frac{{\mu_{\text{s}} }}{{\mu_{\text{d}} }}}}{{3\frac{{\mu_{\text{s}} }}{{\mu_{\text{d}} }} - 2}},\frac{{3\mu_{\text{s}} F_{z} }}{{C_{Fs} }}. \\ \end{aligned}$$

Note 12.3 Eqs. (12.51), (12.55) and (12.56)

Equation (12.51)

Note that Δx1 is the cumulative relative displacement between the belt and road from the leading edge of the contact patch to the position x1. Meanwhile, Δx0 is the relative displacement between the belt and road at some time. Figure 12.21 shows that the tire is under braking. The slip ratio is then positive and is given by

$$s = \frac{{V_{\text{R}} - (V_{\text{B}} + \Delta V_{2} )}}{{V_{\text{R}} }} = \frac{{ - \Delta V - \Delta V_{2} }}{{V_{\text{R}} }}.$$

Referring to Fig. 12.21, we have

$$\begin{aligned} \Delta x_{2} & = \frac{{F_{x} }}{{R_{x} }} \\ \Delta x_{1} & = \frac{{F_{x} }}{{C_{x} wl}}. \\ \end{aligned}$$

Referring to Fig. 12.21, when torque is applied to the contact surface, we have

$$\begin{aligned} \Delta x & = \Delta x_{1} + \Delta x_{2} \\ G_{x} & = \frac{{F_{x} }}{\Delta x} = \frac{{F_{x} }}{{\frac{{F_{x} }}{{C_{x} bl}} + \frac{{F_{x} }}{{R_{x} }}}} = \frac{{R_{x} C_{x} bl}}{{R_{x} + C_{x} bl}}. \\ \end{aligned}$$

Referring to Eq. (12.9), CFs is given by CFs = Cxbl2/2.

Taking the limit ω/VR  0, we obtain

$$\begin{aligned} A & = 1 + \frac{{C_{x} b}}{{R_{x} }}\left( {l - \frac{{V_{\text{R}} }}{\omega }\sin \frac{\omega l}{{V_{\text{R}} }}} \right) = 1 + \frac{{C_{x} b}}{{R_{x} }}\left( {l - l\sin \frac{\omega l}{{V_{\text{R}} }}/\frac{\omega l}{{V_{\text{R}} }}} \right) \to 1 \\ B & = \frac{{C_{x} bV_{\text{R}} }}{{\omega R_{x} }}\left( {\cos \frac{\omega l}{{V_{\text{R}} }} - 1} \right) \to 0, \\ \end{aligned}$$
$$\begin{aligned}&\sqrt {\left( {\frac{{V_{\text{R}} }}{\omega }\sin \frac{\omega l}{{V_{\text{R}} }} - l} \right)^{2} + \frac{{V_{\text{R}}^{2} }}{{\omega^{2} }}\left( {\cos \frac{\omega l}{{V_{\text{R}} }} - 1} \right)^{2} } \\ &\quad \cong \sqrt {\left( {l\sin \frac{\omega l}{{V_{\text{R}} }}/\frac{\omega l}{{V_{\text{R}} }} - l} \right)^{2} + \frac{{V_{\text{R}}^{2} }}{{\omega^{2} }}\left( {\frac{{\omega^{2} l^{2} }}{{2V_{\text{R}}^{2} }}} \right)^{2} } \cong \frac{{\omega l^{2} }}{{2V_{\text{R}} }}, \end{aligned}$$
$$\begin{aligned} K_{\text{d}} &= \frac{{C_{x} bV}}{{\omega \sqrt {A^{2} + B^{2} } }}\sqrt {\left( {\frac{{V_{\text{R}} }}{\omega }\sin \frac{\omega l}{{V_{\text{R}} }} - l} \right)^{2} + \frac{{V_{\text{R}}^{2} }}{{\omega^{2} }}\left( {\cos \frac{\omega l}{{V_{\text{R}} }} - 1} \right)^{2} } \to \frac{{C_{x} bV_{\text{R}} }}{\omega }\frac{{\omega l^{2} }}{{2V_{\text{R}} }}\\ &= \frac{{C_{x} bl^{2} }}{2}. \end{aligned}$$

Taking the limit ω/VR  ∞, we obtain

$$\begin{aligned} A & = 1 + \frac{{C_{x} b}}{{R_{x} }}\left( {l - \frac{{V_{\text{R}} }}{\omega }\sin \frac{\omega l}{{V_{\text{R}} }}} \right) \to 1 + \frac{{C_{x} bl}}{{R_{x} }} \\ B & = \frac{{C_{x} bV_{\text{R}} }}{{\omega R_{x} }}\left( {\cos \frac{\omega l}{{V_{\text{R}} }} - 1} \right) \to 0, \\ \end{aligned}$$
$$\begin{aligned} G_{\text{d}} &= \frac{{C_{x} b}}{{\sqrt {A^{2} + B^{2} } }}\sqrt {\left( {\frac{{V_{\text{R}} }}{\omega }\sin \frac{\omega l}{{V_{\text{R}} }} - l} \right)^{2} + \frac{{V_{\text{R}}^{2} }}{{\omega^{2} }}\left( {\cos \frac{\omega l}{{V_{\text{R}} }} - 1} \right)^{2} } \to \frac{{C_{x} bl}}{{1 + \frac{{C_{x} bl}}{{R_{x} }}}} \\ &= \frac{{C_{x} R_{x} bl}}{{R_{x} + C_{x} bl}}.\end{aligned}$$

Note 12.4 Eqs. (12.60), (12.63) and (12.87)

If the pressure distribution is expressed by a parabola, the maximum pressure pm is equal to 1.5 times the average pressure pav (pm = 1.5pav). Owing to the bending rigidity of tires, the average pressure pav will be larger than the inflation pressure pa (pav > p).

The boundary conditions of real tires are expressed as u ≈ v at the tire shoulder and u = 0, v ≠ 0 at the tire center. Hence, Eq. (12.64) may not be satisfied in a tire.

$$\begin{aligned} h(x) & = j + \frac{{\bar{t}}}{w}x \\ h^{2} & = \frac{1}{w}\int\limits_{0}^{w} {h^{2} (x)} \text{d}x = \frac{1}{w}\int\limits_{0}^{w} {\left( {j + \frac{{\bar{t}}}{w}x} \right)^{2} } \text{d}x = j^{2} + j\bar{t} + \bar{t}^{2} /3 \\ \end{aligned}$$

Note 12.5 Eq. (12.99)

The Mohr–Coulomb failure criterion can be determined in shear tests for various normal stresses σ. The Mohr–Coulomb failure criterion is that when Mohr circle comes into contact with the line of Eq. (12.99), with plastic deformation occurring at this point. Suppose that the Mohr circle comes into contact with the Mohr–Coulomb failure criterion at point A of Fig. 12.114a and the angle between the σ-axis and the line connecting point A with the center of the Mohr circle is 2θ (where the counterclockwise direction is positive). A(σ, τ) in Fig. 12.114a expresses the stress field in the coordinate system at angle θ (clockwise direction) measured from the direction of the maximum stress σ1. Hence, the shear stress τ is applied on plane A–A in Fig. 12.114b. Considering similarly at point A′ expressed by A′(σ, − τ) in Fig. 12.114a, the shear stress −τ is applied on plane A′–A′ with an angle π/2 − θ measured from the direction of the maximum stress σ1 in Fig. 12.114b. According to internal friction theory, planes A–A and A′–A′ will become sliding planes.

Fig. 12.114
figure 114

Physical meaning of the Mohr–Coulomb failure criterion

Note 12.6 Eqs. (12.102), (12.113) and (12.121) for the Heat Flow of a Semi-infinite Solid [160]

The governing equation for the heat conduction of a semi-infinite solid is

$$\frac{\partial T}{\partial t} = \alpha \frac{{\partial^{2} T}}{{\partial z^{2} }}\quad 0 \le z < \infty ,\quad t \ge 0,\quad T = T_{0} \quad 0 \le z < \infty ,\quad t = 0.$$
(12.222)

The solution to Eq. (12.222) is

$$T(z,t) = T_{0} \text{erf}\left( {\frac{z}{{2\sqrt {\alpha t} }}} \right),$$
(12.223)

where erf(z) is defined by

$$\text{erf}\left( z \right) = \frac{2}{\sqrt \pi }\int\limits_{0}^{z} {\text{e}^{{ - \xi^{2} }} \text{d}\xi } .$$
(12.224)

Suppose that initial condition and boundary condition are given by

$$T = T_{0} \quad 0 \le t \le l/V,\quad T = T_{\text{m}} \quad z = 0.$$
(12.225)

The solution to Eqs. (12.222) and (12.225) is

$$T_{\text{m}} - T = \left( {T_{\text{m}} - T_{0} } \right)\text{erf}\left( {\frac{z}{{2\sqrt {\alpha t} }}} \right).$$
(12.226)

The rate of heat flow is

$$\dot{Q}_{\text{c}} = - k\left. {\frac{{\text{d}T}}{{\text{d}z}}} \right|_{z = 0} = k\left( {T_{\text{m}} - T_{0} } \right)\frac{1}{{\sqrt {\pi \alpha t} }}.$$
(12.227)

Expressing Tm − T0 = Tb and transforming from the temporal domain to the spatial domain using t = x/V yields

$$\dot{Q}_{\text{c}} = - k\left. {\frac{{\text{d}T}}{{\text{d}z}}} \right|_{z = 0} = kT_{\text{b}} \left( {\frac{V}{\pi \alpha x}} \right)^{{\frac{1}{2}}} .$$
(12.228)

The total heat that flows through a unit area from t = 0 to t = l/V is therefore

$$Q = \int\limits_{0}^{l/V} {\dot{Q}_{\text{c}} \text{d}t} = 2k\left( {T_{\text{m}} - T_{0} } \right)\left( {\frac{l}{\pi \alpha V}} \right)^{{\frac{1}{2}}} .$$
(12.229)

Note 12.7 Eq. (12.104) for heat flow of a semi-infinite solid [160]

Consider the problem that the flux of heat at x = 0 is a prescribed function of time, the initial temperature is 0 °C, and the flux \(\dot{Q}\) per unit time per unit area is constant. \(\dot{Q}\) is expressed by

$$\dot{Q} = - k\frac{\partial T}{\partial x}.$$
(12.230)

\(\dot{Q}\) satisfies the differential equation at T:

$$\frac{{\partial \dot{Q}}}{\partial t} = - \alpha \frac{{\partial^{2} \dot{Q}}}{{\partial x^{2} }}\quad x > 0,\;t > 0,$$
(12.231)

where α is the diffusivity constant. The solution to Eq. (12.231) with

$$\dot{Q} = \dot{Q}_{0} \quad x = 0,\;t > 0$$
(12.232)

is

$$\dot{Q} = \dot{Q}_{0}\text{erfc}\left( {\frac{x}{{2\sqrt {\alpha t} }}} \right).$$
(12.233)

erfc(x) is defined by

$$\begin{aligned}\text{erfc}\left( x \right) & = 1 - \text{erf}\left( x \right) = \frac{2}{\sqrt \pi }\int\limits_{x}^{\infty } {\text{e}^{{ - \xi^{2} }} \text{d}\xi } \\ \text{erf}\left( x \right) & = \frac{2}{\sqrt \pi }\int\limits_{0}^{x} {\text{e}^{{ - \xi^{2} }} \text{d}\xi } . \\ \end{aligned}$$
(12.234)

Equations (12.230) and (12.232) yield

$$T = \frac{{\dot{Q}_{0} }}{k}\int\limits_{x}^{\infty } {\text{erfc}\left( {\frac{x}{{2\sqrt {\alpha t} }}} \right)\text{d}x} = \frac{{2\dot{Q}_{0} \sqrt {\alpha t} }}{k}\text{ierfc}\left( {\frac{x}{{2\sqrt {\alpha t} }}} \right) = \frac{{2\dot{Q}_{0} }}{k}\left\{ {\left( {\frac{\alpha t}{\pi }} \right)^{{\frac{1}{2}}} \text{e}^{{ - \frac{{x^{2} }}{4\alpha t}}} - \frac{x}{2}\text{erfc}\left( {\frac{x}{{2\sqrt {\alpha t} }}} \right)} \right\}.$$
(12.235)

In the derivation of Eq. (12.235), applying integration by parts, we obtain

$$\begin{aligned} \text{ierf}(x) & = \frac{2}{\sqrt \pi }\int\limits_{x}^{\infty } {\int\limits_{\eta }^{\infty } {\text{e}^{{ - \xi^{2} }} \text{d}\xi } \text{d}\eta } = \frac{2}{\sqrt \pi }\left[ {\eta \int\limits_{\eta }^{\infty } {\text{e}^{{ - \xi^{2} }} \text{d}\xi } } \right]_{x}^{\infty } - \frac{2}{\sqrt \pi }\int\limits_{x}^{\infty } {\eta \text{e}^{{ - \xi^{2} }} \text{d}\eta } \\ & = - \frac{2}{\sqrt \pi }x\int\limits_{x}^{\infty } {\text{e}^{{ - \xi^{2} }} \text{d}\xi } + \frac{1}{\sqrt \pi }\text{e}^{{ - x^{2} }} = \frac{1}{\sqrt \pi }\text{e}^{{ - x^{2} }} - x\text{erf}(x), \\ \end{aligned}$$
(12.236)

where

$$\text{ierfc}\left( x \right) = \int\limits_{x}^{\infty } {\text{erfc}\left( \xi \right)\text{d}\xi } .$$
(12.237)

The temperature at x = 0 is given by

$$T = \frac{{2\dot{Q}_{0} }}{k}\left( {\frac{\alpha t}{\pi }} \right)^{{\frac{1}{2}}} .$$
(12.238)

The above discussion can be extended to the infinite composite solid. Suppose the region x > 0 is that of one substance with the properties k1, ρ1 and α1 while the region x < 0 is that of another substance with the properties k2, ρ2 and α2. The boundary conditions on the plane of separation x = 0 are

$$\begin{aligned} T_{1} & = T_{2} \quad x = 0,\quad t > 0 \\ k_{1} \frac{{\partial T_{1} }}{\partial x} & = k_{2} \frac{{\partial T_{2} }}{\partial x}\quad x = 0,\quad t > 0, \\ \end{aligned}$$
(12.239)

where we write T1 for the temperature in the region x > 0 and T2 for the temperature in the region x < 0.

Suppose that heat is supplied for t > 0 at the constant rate \(\dot{Q}_{0}\) per unit time per unit area on the plane x = 0. Similar to Eq. (12.235), we assume

$$\begin{aligned} T_{1} & = \frac{{2\dot{Q}_{01} \sqrt {\alpha_{1} t} }}{{k_{1} }}\text{ierfc}\left( {\frac{x}{{2\sqrt {\alpha_{1} t} }}} \right)\quad x > 0 \\ T_{2} & = \frac{{2\dot{Q}_{02} \sqrt {\alpha_{2} t} }}{{k_{2} }}\text{ierfc}\left( {\frac{\left| x \right|}{{2\sqrt {\alpha_{2} t} }}} \right)\quad x < 0, \\ \end{aligned}$$
(12.240)

where the unknown constants T1 and T2 are to be found from the boundary conditions at x = 0, which gives

$$\frac{{\dot{Q}_{01} \sqrt {\alpha_{1} } }}{{k_{1} }} = \frac{{\dot{Q}_{02} \sqrt {\alpha_{2} } }}{{k_{2} }},\quad \text{and}\quad \dot{Q}_{01} + \dot{Q}_{02} = \dot{Q}_{0} .$$
(12.241)

Therefore,

$$\begin{aligned} T_{1} & = \frac{{2\dot{Q}_{0} \sqrt {\alpha_{1} \alpha_{2} t} }}{{k_{1} \sqrt {\alpha_{2} } + k_{2} \sqrt {\alpha_{1} } }}\text{ierfc}\left( {\frac{x}{{2\sqrt {\alpha_{1} t} }}} \right)\quad x > 0 \\ T_{2} & = \frac{{2\dot{Q}_{0} \sqrt {\alpha_{1} \alpha_{2} t} }}{{k_{1} \sqrt {\alpha_{2} } + k_{2} \sqrt {\alpha_{1} } }}\text{ierfc}\left( {\frac{\left| x \right|}{{2\sqrt {\alpha_{2} t} }}} \right)\quad x < 0. \\ \end{aligned}$$
(12.242)

Considering \(\text{ierfc}(0) = 1/\sqrt \pi\) and T1|x=0 = ΔT, Eq. (12.242) yields

$$\Delta T = \frac{{2\dot{Q}_{0} \sqrt {\alpha_{1} \alpha_{2} t} }}{{k_{1} \sqrt {\alpha_{2} } + k_{2} \sqrt {\alpha_{1} } }}\frac{1}{\sqrt \pi } = \frac{{\frac{{2\dot{Q}_{0} }}{{k_{1} }}\left( {\frac{{\alpha_{1} t}}{\pi }} \right)^{{\frac{1}{2}}} }}{{\frac{{k_{2} }}{{k_{1} }}\left( {\frac{{\alpha_{1} }}{{\alpha_{2} }}} \right)^{{\frac{1}{2}}} + 1}}.$$
(12.243)

Note 12.8 Eqs. (12.125) and (12.134)

Equation (12.125)

The Navier–Stokes equation is expressed as Eq. (12.67). In the thin-film lubrication problem, terms of \(\partial^{2}/\partial z^{2}\) are dominant and the modified Reynolds number Remod is used instead of the Reynolds number Re:

$$Re_{\bmod } = \frac{\text{inertia term}}{\text{viscosity term}} = \frac{{\rho U^{2} /l}}{{\eta U/h^{2} }} = \frac{\rho Ul}{\eta }\left( {\frac{h}{l}} \right)^{2} = Re \left( {\frac{h}{l}} \right)^{2} ,$$
(12.244)

where U is the speed of water relative to the tire, h is the thickness of the water layer and l is the contact length. Because inertia terms are negligible comparing to viscosity terms at small Remod, Eq. (12.67) is simplified as

$$\begin{aligned} \frac{{\partial p_{\text{f}} }}{\partial x} & = \eta \frac{{\partial^{2} u}}{{\partial z^{2} }} \\ \frac{{\partial p_{\text{f}} }}{\partial y} & = \eta \frac{{\partial^{2} v}}{{\partial z^{2} }} \\ \frac{{\partial p_{\text{f}} }}{\partial z} & = 0. \\ \end{aligned}$$
(12.245)

Equation (12.245) is called the Stokes equation. Suppose boundary conditions are given by

$$\begin{aligned} u & = U_{1} ,\quad v = V_{1} ,\quad w = W_{1} \quad \text{at}\,z = 0\quad (\text{on the pavement surface}) \\ u & = U_{2} ,\quad v = V_{2} ,\quad w = W_{2} \quad \text{at}\,z = h\quad (\text{on the tire surface}), \\ \end{aligned}$$
(12.246)

where U2, V2 and W2 are the velocities of water at z = h in x-, y- and z-directions, respectively. W2 = 0 is satisfied if the tire is assumed to have a blank tread. Furthermore, V1 = 0 is satisfied on a road surface (z = 0) when lateral sliding does not occur. W1 = 0 is also satisfied on a road surface (z = 0), because there is no water flow in the z-direction if water flow is not disturbed on the smooth road surface.

The boundary condition for a free surface is given by

$$p_{\text{f}} = 0.$$
(12.247)

Hence, the fundamental equations for hydroplaning are Eq. (12.245) with the boundary conditions of Eqs. (12.246) and (12.247). Solutions to Eq. (12.245) satisfying the boundary condition of Eq. (12.246) are given by

$$\begin{aligned} u & = - \frac{1}{2\eta }\frac{{\partial p_{\text{f}} }}{\partial x}z\left( {h - z} \right) + U_{1} \left( {1 - \frac{z}{h}} \right) + U_{2} \frac{z}{h} \\ v & = - \frac{1}{2\eta }\frac{{\partial p_{\text{f}} }}{\partial y}z\left( {h - z} \right) + V_{1} \left( {1 - \frac{z}{h}} \right) + V_{2} \frac{z}{h}, \\ \end{aligned}$$
(12.248)

where the average speeds of the fluid \(\bar{u}\) and \(\bar{v}\) are given by

$$\begin{aligned} h\bar{u} & = \int\limits_{0}^{h} {u\text{d}z = } - \frac{1}{12\mu }\frac{{\partial p_{\text{f}} }}{\partial x}h^{3} + \frac{1}{2}\left( {U_{1} + U_{2} } \right)h \\ h\bar{v} & = \int\limits_{0}^{h} {v\text{d}z = } - \frac{1}{12\mu }\frac{{\partial p_{\text{f}} }}{\partial y}h^{3} + \frac{1}{2}\left( {V_{1} + V_{2} } \right)h. \\ \end{aligned}$$
(12.249)

Assuming that the continuity equation is satisfied in the sense of the average water thickness h, we obtain

$$\int\limits_{0}^{h} {\left( {\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}} \right)\text{d}z = 0} .$$
(12.250)

Rewriting the above equation yieldsFootnote 20

$$0 = \frac{\partial }{\partial x}\int\limits_{0}^{h} {u\text{d}z + } \frac{\partial }{\partial y}\int\limits_{0}^{h} {v\text{d}z + } \left[ { - \frac{\partial h}{\partial x}\left( u \right)_{z = h} - \frac{\partial h}{\partial y}\left( v \right)_{z = h} + \left( w \right)_{z = 0}^{z = h} } \right],$$
(12.251)

where the term in [·] is zero because it is the vertical component of the water speed on the tire and road surface.

Using the definition of the average speed of fluid \(\bar{u}\) and \(\bar{v}\) in Eq. (12.249), Eq. (12.251) is rewritten as

$$\frac{{\partial \left( {h\bar{u}} \right)}}{\partial x} + \frac{{\partial \left( {h\bar{v}} \right)}}{\partial y} = 0.$$
(12.252)

The substitution of Eq. (12.249) into Eq. (12.252) yields

$$\frac{\partial }{\partial x}\left( {h^{3} \frac{{\partial p_{\text{f}} }}{\partial x}} \right) + \frac{\partial }{\partial y}\left( {h^{3} \frac{{\partial p_{\text{f}} }}{\partial y}} \right) = F(x,y).$$
(12.253)

Equation (12.253) is called the Reynolds equation. F(x, y) is expressed as

$$\begin{aligned}F(x,y) &= 12\eta h\frac{\partial }{\partial x}\left( {\frac{{U_{1} + U_{2} }}{2}} \right) + 12\eta \frac{\partial h}{\partial x}\left( {\frac{{U_{1} + U_{2} }}{2}} \right) \\ &\quad+\, 12\eta h\frac{\partial }{\partial y}\left( {\frac{{V_{1} + V_{2} }}{2}} \right) + 12\eta \frac{\partial h}{\partial y}\left( {\frac{{V_{1} + V_{2} }}{2}} \right).\end{aligned}$$
(12.254)

If flow in the x-direction is neglected, Eq. (12.254) can be simplified as

$$F(x,y) = 12\eta h\frac{\partial }{\partial y}\left( {\frac{{V_{1} + V_{2} }}{2}} \right) + 12\eta \frac{\partial h}{\partial y}\left( {\frac{{V_{1} + V_{2} }}{2}} \right) = 12\eta \frac{\partial }{\partial y}\left( {h\frac{{V_{1} + V_{2} }}{2}} \right).$$
(12.255)

Using Eq. (12.121), we obtain

$$\int\limits_{{x_{\text{m}} }}^{l} {\dot{Q}_{\text{c}} \text{d}t} = \frac{1}{V}\int\limits_{{x_{\text{m}} }}^{l} {\dot{Q}_{\text{c}} \text{d}x} = \frac{1}{V}\int\limits_{{x_{\text{m}} }}^{l} {k_{\text{i}} T_{\text{b}} } \sqrt {\frac{V}{{\pi \alpha_{\text{i}} \left( {x - x_{\text{m}} } \right)}}} \text{d}x = 2k_{\text{i}} T_{\text{b}} \left\{ {\frac{{l - x_{\text{m}} }}{{\pi \alpha_{\text{t}} V}}} \right\}^{{\frac{1}{2}}} .$$

Note 12.9 Eq. (12.149) [115]

The amount of heat conducted into ice during the time interval l/V is expressed by

$$Q_{c1} = \frac{{k_{1} bl\Delta T_{1} }}{\delta }\frac{l}{V},$$
(12.256)

where l is the contact length of the tire, b is the contact width of the tire, V is the axle velocity, k1 is the thermal conductivity of ice, ΔT1 is the temperature difference between the contact surface and ice, and δ is the thickness of the layer into which heat is conducted. This amount of heat is equal to the energy stored in the heated layer expressed by

$$Q_{{c1\_\text{stored}}} = \rho_{1} bl\delta c_{1} \Delta T_{1} /2,$$
(12.257)

where ρ1 is the density of ice and c1 is the specific heat capacity of ice.

Using Eqs. (12.256) and (12.257), the thickness δ can be eliminated:

$$Q_{c1} = bl\Delta T_{1} \left( {\frac{l}{2V}} \right)^{{\frac{1}{2}}} \left( {k_{1} c_{1} \rho_{1} } \right)^{{\frac{1}{2}}} .$$
(12.258)

Considering heat conduction from the interface to the tire, the total heat flow due to conduction is

$$Q_{\text{c}} = bl\left( {\frac{l}{2V}} \right)^{{\frac{1}{2}}} \left\{ {\Delta T_{1} \left( {k_{1} c_{1} \rho_{1} } \right)^{{\frac{1}{2}}} + \Delta T_{2} \left( {k_{2} c_{2} \rho_{2} } \right)^{{\frac{1}{2}}} } \right\},$$
(12.259)

where k2 is the thermal conductivity of the tire, ΔT2 is the temperature difference between the contact surface and the tire, ρ2 is the density of the tire tread rubber, and c2 is the specific heat capacity of the tire tread rubber.

The melting of an ice layer of thickness d requires energy Qm:

$$Q_{\text{m}} = bl\text{d}L\rho_{1} ,$$
(12.260)

where L is the latent heat of melting for ice. The frictional energy produced during a time interval l/V is expressed by

$$Q_{\text{f}} = \mu F_{z} V_{\text{s}} \cdot l/V,$$
(12.261)

where Fz is the load applied to the tire, μ is the friction coefficient of the tire on ice, and Vs is the sliding velocity.

Using the equation Qf = Qc + Qm for Eqs. (12.259), (12.260) and (12.261), we obtain

$$\mu F_{z} V_{\text{s}} \frac{l}{V} = bl\left( {\frac{l}{2V}} \right)^{{\frac{1}{2}}} \left\{ {\Delta T_{1} \left( {k_{1} c_{1} \rho_{1} } \right)^{{\frac{1}{2}}} + \Delta T_{2} \left( {k_{2} c_{2} \rho_{2} } \right)^{{\frac{1}{2}}} } \right\} + bl\text{d}L\rho_{1} ,$$
(12.262)

from which the thickness of the water layer d can be obtained as

$$d = \frac{1}{{L\rho_{1} }}\left[ {\frac{{\mu F_{z} V_{\text{s}} }}{bV} - \left( {\frac{l}{2V}} \right)^{{\frac{1}{2}}} \left\{ {\Delta T_{1} \left( {k_{1} c_{1} \rho_{1} } \right)^{{\frac{1}{2}}} + \Delta T_{2} \left( {k_{2} c_{2} \rho_{2} } \right)^{{\frac{1}{2}}} } \right\}} \right].$$
(12.263)

Neglecting the frictional force in the dry contact region, the frictional force Fμ generated by the viscous shear in the water layer between the ice and tire is expressed as

$$F_{\mu } = \tau bl = \eta \frac{{\text{d}v}}{{\text{d}y}}bl = \eta \frac{{V_{\text{s}} }}{\text{d}}bl,$$
(12.264)

where τ is the shear stress and η is the viscosity of water.

Considering that Fμ = μFz and substituting d of Eq. (12.263) into Eq. (12.264) yields

$$\mu^{2} - \frac{b}{{F_{z} }}\frac{V}{{V_{\text{s}} }}\left( {\frac{l}{2V}} \right)^{{\frac{1}{2}}} \left\{ {\Delta T_{1} \left( {\lambda_{1} c_{1} \rho_{1} } \right)^{{\frac{1}{2}}} + \Delta T_{2} \left( {\lambda_{2} c_{2} \rho_{2} } \right)^{{\frac{1}{2}}} } \right\}\mu - \frac{{\eta VblL\rho_{1} b}}{{F_{z}^{2} }} = 0.$$
(12.265)

When a tire is locked, Vs = V is satisfied. Substituting this relation into Eq. (12.265), μ is obtained as

$$\begin{aligned} \mu &= \frac{b}{{2F_{z} }}\left( {\frac{l}{{2V_{\text{s}} }}} \right)^{{\frac{1}{2}}} \left\{ {\Delta T_{1} \left( {k_{1} c_{1} \rho_{1} } \right)^{{\frac{1}{2}}} + \Delta T_{2} \left( {k_{2} c_{2} \rho_{2} } \right)^{{\frac{1}{2}}} } \right\} \\ &\quad +\, \left[ {\frac{{b^{2} l}}{{8F_{z} 2V_{\text{s}} }}\left\{ {\Delta T_{1} \left( {k_{1} c_{1} \rho_{1} } \right)^{{\frac{1}{2}}} + \Delta T_{2} \left( {k_{2} c_{2} \rho_{2} } \right)^{{\frac{1}{2}}} } \right\}^{2} + \frac{{\eta_{0} V_{\text{s}} blL\rho_{1} b}}{{F_{z}^{2} }}} \right]^{{\frac{1}{2}}} . \end{aligned}$$
(12.266)

Note 12.10 Eq. (12.251)

$$\begin{aligned}& \int {u(x,y,z)\text{d}z} = U(x,y,z),\quad \int\limits_{0}^{h(x,y)} {u(x,y,z)\text{d}z} = U(x,y,h(x,y)) - U(x,y,0) \\ &\frac{\partial }{\partial x}\int\limits_{0}^{h(x,y)} {u(x,y,z)\text{d}z} = \frac{\partial }{\partial x}U(x,y,h(x,y)) + \frac{\partial }{\partial h}U(x,y,h(x,y))\frac{\partial h}{\partial x} - \frac{\partial }{\partial x}U(x,y,0) \\ & \int\limits_{0}^{h(x,y)} {\frac{\partial }{\partial x}u(x,y,z)\text{d}z} = \frac{\partial }{\partial x}U(x,y,h(x,y)) - \frac{\partial }{\partial x}U(x,y,0) \\ &\int\limits_{0}^{h(x,y)} {\frac{\partial }{\partial x}u(x,y,z)\text{d}z} = \frac{\partial }{\partial x}\int\limits_{0}^{h(x,y)} {u(x,y,z)\text{d}z} - \frac{\partial }{\partial h}U(x,y,h(x,y))\frac{\partial h}{\partial x} \\ &\quad = \frac{\partial }{\partial x}\int\limits_{0}^{h(x)} {u(x,y,z)\text{d}z} - u(x,y,h(x,y))\frac{\partial h}{\partial x} \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakajima, Y. (2019). Traction Performance of Tires. In: Advanced Tire Mechanics. Springer, Singapore. https://doi.org/10.1007/978-981-13-5799-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5799-2_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5798-5

  • Online ISBN: 978-981-13-5799-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics