Skip to main content

From Catenary Optics to Engineering Optics 2.0

  • Chapter
  • First Online:
Catenary Optics

Abstract

In this chapter, we summarize the applications of catenary optics in optical engineering. Based on the novel properties of catenary optical fields and catenary structures, it is shown that traditional optical laws and theories could be extended and generalized, which opens a door towards the next-generation engineering optics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Iizuka, Engineering Optics, 3rd edn. (Springer, 2008)

    Google Scholar 

  2. P. Lalanne, P. Chavel, Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev. 11, 1600295 (2017)

    Article  CAS  Google Scholar 

  3. X. Luo, Subwavelength optical engineering with metasurface waves. Adv. Opt. Mater. 6, 1701201 (2018)

    Article  CAS  Google Scholar 

  4. F. Capasso, The future and promise of flat optics: a personal perspective. Nanophotonics 7, 953 (2018)

    Article  Google Scholar 

  5. X. Luo, Engineering optics 2.0: a revolution in optical materials, devices, and systems. ACS Photonics 5, 4724-4738 (2018)

    Article  CAS  Google Scholar 

  6. X. Luo, Subwavelength artificial structures: opening a new era for engineering optics. Adv. Mater. 1804680 (2018)

    Google Scholar 

  7. X. Luo, M. Pu, X. Ma, X. Li, Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices. Int. J. Antennas Propag. 2015, 204127 (2015)

    Google Scholar 

  8. Willebrord Snellius, https://commons.wikimedia.org/wiki/File:Willebrord_Snellius.jpg

  9. Pierre de Fermat, https://commons.wikimedia.org/wiki/File:Pierre_de_Fermat.jpg

  10. Thomas Young,https://commons.wikimedia.org/wiki/File:LifeOfThomasYoung1855PeacockG.jpg

  11. Augustin Fresnel, https://commons.wikimedia.org/wiki/File:Augustin_Fresnel.jpg

  12. James Clerk Maxwell, https://commons.wikimedia.org/wiki/File:James_Clerk_Maxwell.png

  13. Gustav Robert Kirchhoff, https://commons.wikimedia.org/wiki/File:Gustav_Robert_Kirchhoff.jpg

  14. Ernst Abbe, https://commons.wikimedia.org/wiki/File:Ernst_Abbe.jpg

  15. Max Planck,https://commons.wikimedia.org/wiki/File:Max_Planck_1933.jpg

  16. Albert Einstein, https://commons.wikimedia.org/wiki/File:Albert_Einstein_(Nobel).png

  17. R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics (Basic Books, 1963)

    Google Scholar 

  18. R.P. Crease, The most beautiful experiment. Phys. World 15, 19 (2002)

    Article  Google Scholar 

  19. X. Luo, T. Ishihara, Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84, 4780–4782 (2004)

    Article  CAS  Google Scholar 

  20. X. Luo, T. Ishihara, Subwavelength photolithography based on surface-plasmon polariton resonance. Opt. Express 12, 3055–3065 (2004)

    Article  Google Scholar 

  21. H.F. Schouten, N. Kuzmin, G. Dubois, T.D. Visser, G. Gbur, P.F.A. Alkemade, H. Blok, G. W.’t Hooft, D. Lenstra, E.R. Eliel, Plasmon-assisted two-slit transmission: Young’s experiment revisited. Phys. Rev. Lett. 94, 053901 (2005)

    Google Scholar 

  22. R. Zia, M.L. Brongersma, Surface plasmon polariton analogue to Young’s double-slit experiment. Nat. Nanotechnol. 2, 426 (2007)

    Article  CAS  Google Scholar 

  23. X. Luo, D. Tsai, M. Gu, M. Hong, Subwavelength interference of light on structured surfaces. Adv. Opt. Photonics 10, 757–842 (2018)

    Article  Google Scholar 

  24. M. Pu, Y. Guo, X. Li, X. Ma, X. Luo, Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018)

    Article  CAS  Google Scholar 

  25. H. Shi, X. Luo, C. Du, Young’s interference of double metallic nanoslit with different widths. Opt. Express 15, 11321–11327 (2007)

    Article  Google Scholar 

  26. T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, X. Luo, Directional excitation of surface plasmons with subwavelength slits. Appl. Phys. Lett. 92, 101501 (2008)

    Article  CAS  Google Scholar 

  27. T. Xu, C. Wang, C. Du, X. Luo, Plasmonic beam deflector. Opt. Express 16, 4753–4759 (2008)

    Article  Google Scholar 

  28. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)

    Article  CAS  Google Scholar 

  29. R. Welti, Light transmission through two slits: the Young experiment revisited. J. Opt. Pure Appl. Opt. 8, 606 (2006)

    Article  Google Scholar 

  30. M. Pu, X. Ma, Y. Guo, X. Li, X. Luo, Theory of microscopic meta-surface waves based on catenary optical fields and dispersion. Opt. Express 26, 19555–19562 (2018)

    Article  CAS  Google Scholar 

  31. X. Luo, Principles of electromagnetic waves in metasurfaces. Sci. China-Phys. Mech. Astron. 58, 594201 (2015)

    Article  CAS  Google Scholar 

  32. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  CAS  Google Scholar 

  33. Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, X. Luo, Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination. Sci. Rep. 5, 15320 (2015)

    Article  CAS  Google Scholar 

  34. P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, X. Luo, Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Appl. Phys. Lett. 106, 093110 (2015)

    Article  CAS  Google Scholar 

  35. D.O.S. Melville, R.J. Blaikie, Super-resolution imaging through a planar silver layer. Opt. Express 13, 2127–2134 (2005)

    Article  CAS  Google Scholar 

  36. N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)

    Article  CAS  Google Scholar 

  37. L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D.B. Bogy, X. Zhang, Maskless plasmonic lithography at 22 nm resolution. Sci. Rep. 1, 175 (2011)

    Article  CAS  Google Scholar 

  38. F.J. Garcia-Vidal, L. Martin-Moreno, T.W. Ebbesen, L. Kuipers, Light passing through subwavelength apertures. Rev. Mod. Phys. 82, 729–787 (2010)

    Article  Google Scholar 

  39. E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)

    Article  CAS  Google Scholar 

  40. X. Luo, Plasmonic metalens for nanofabrication. Natl. Sci. Rev. 5, 137–138 (2018)

    Article  Google Scholar 

  41. T. Laufer, Thermal Fluid-Structure analysis of an optical device including radiation and conduction, in Star European Conference (2011)

    Google Scholar 

  42. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, X. Zhang, Realization of optical superlens imaging below the diffraction limit. New J. Phys. 7, 255 (2005)

    Article  Google Scholar 

  43. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, X. Zhang, Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat. Commun. 1, 143 (2010)

    Article  CAS  Google Scholar 

  44. L. Liu, K. Liu, Z. Zhao, C. Wang, P. Gao, X. Luo, Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer. RSC Adv. 6, 95973–95978 (2016)

    Article  CAS  Google Scholar 

  45. T. Xu, A. Agrawal, M. Abashin, K.J. Chau, H.J. Lezec, All-angle negative refraction and active flat lensing of ultraviolet light. Nature 497, 470–474 (2013)

    Article  CAS  Google Scholar 

  46. L. Liu, P. Gao, K. Liu, W. Kong, Z. Zhao, M. Pu, C. Wang, X. Luo, Nanofocusing of circularly polarized Bessel-type plasmon polaritons with hyperbolic metamaterials. Mater. Horiz. 4, 290–296 (2017)

    Article  CAS  Google Scholar 

  47. J.A. Coles, Some reflective properties of the tapetum lucidum of the cat’s eye. J. Physiol. 212, 393–409 (1971)

    Article  CAS  Google Scholar 

  48. T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, X. Luo, Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns. Appl. Phys. B 97, 175–179 (2009)

    Article  CAS  Google Scholar 

  49. L. Bourke, R.J. Blaikie, Herpin effective media resonant underlayers and resonant overlayer designs for ultra-high NA interference lithography. J. Opt. Soc. Am. A 34, 2243–2249 (2017)

    Article  Google Scholar 

  50. L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, X. Luo, Batch fabrication of metasurface holograms enabled by plasmonic cavity lithography. Adv. Opt. Mater. 5, 1700429 (2017)

    Article  CAS  Google Scholar 

  51. A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Hyperbolic metamaterials. Nat. Photonics 7, 948–957 (2013)

    Article  CAS  Google Scholar 

  52. A.A. Orlov, S.V. Zhukovsky, I.V. Iorsh, P.A. Belov, Controlling light with plasmonic multilayers. Photonics Nanostruct. - Fundam. Appl. 14, 213–230 (2014)

    Article  Google Scholar 

  53. W. Wang, H. Xing, L. Fang, Y. Liu, J. Ma, L. Lin, C. Wang, X. Luo, Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial. Opt. Express 16, 21142–21148 (2008)

    Article  CAS  Google Scholar 

  54. S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, X. Zhang, Ray optics at a deep-subwavelength scale: a transformation optics approach. Nano Lett. 8, 4243–4247 (2008)

    Article  CAS  Google Scholar 

  55. J. Sun, T. Xu, N.M. Litchinitser, Experimental demonstration of demagnifying hyperlens. Nano Lett. 16, 7905–7909 (2016)

    Article  CAS  Google Scholar 

  56. A. Dudley, M.P.J. Lavery, M.J. Padgett, A. Forbes, Unraveling Bessel beams. Opt. Photonics News 22, 24–29 (2013)

    Google Scholar 

  57. J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, X. Luo, Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography. Nanoscale 7, 18805–18812 (2015)

    Article  CAS  Google Scholar 

  58. F. Qin, M. Hong, Breaking the diffraction limit in far field by planar metalens. Sci. China Phys. Mech. Astron. 60, 044231 (2017)

    Article  Google Scholar 

  59. Z. Li, T. Zhang, Y. Wang, W. Kong, J. Zhang, Y. Huang, C. Wang, X. Li, M. Pu, X. Luo, Achromatic broadband super-resolution imaging by super-oscillatory metasurface. Laser Photonics Rev. 12, 1800064 (2018)

    Article  Google Scholar 

  60. C. Wang, D. Tang, Y. Wang, Z. Zhao, J. Wang, M. Pu, Y. Zhang, W. Yan, P. Gao, X. Luo, Super-resolution optical telescopes with local light diffraction shrinkage. Sci. Rep. 5, 18485 (2015)

    Article  CAS  Google Scholar 

  61. H.P. Stahl, Survey of cost models for space telescopes. Opt. Eng. 49, 053005 (2010)

    Article  Google Scholar 

  62. R.A. Hyde, Eyeglass. 1. Very large aperture diffractive telescopes. Appl. Opt. 38, 4198–4212 (1999)

    Article  CAS  Google Scholar 

  63. P.D. Atcheson, C. Stewart, J. Domber, K. Whiteaker, J. Cole, P. Spuhler, A. Seltzer, J.A. Britten, S.N. Dixit, B. Farmer, L. Smith, MOIRE: initial demonstration of a transmissive diffractive membrane optic for large lightweight optical telescopes, in (2012), Vol. 8442, pp. 844221-8442–14

    Google Scholar 

  64. Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, X. Luo, Achromatic flat optical components via compensation between structure and material dispersions. Sci. Rep. 6, 19885 (2016)

    Article  CAS  Google Scholar 

  65. L. Verslegers, P.B. Catrysse, Z. Yu, J.S. White, E.S. Barnard, M.L. Brongersma, S. Fan, Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett. 9, 235–238 (2009)

    Article  CAS  Google Scholar 

  66. S. Ishii, V.M. Shalaev, A.V. Kildishev, Holey-metal lenses: sieving single modes with proper phases. Nano Lett. 13, 159–163 (2013)

    Article  CAS  Google Scholar 

  67. L. Lin, X.M. Goh, L.P. McGuinness, A. Roberts, Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing. Nano Lett. 10, 1936 (2010)

    Article  CAS  Google Scholar 

  68. M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, X. Luo, Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015)

    Article  CAS  Google Scholar 

  69. X. Li, M. Pu, Z. Zhao, X. Ma, J. Jin, Y. Wang, P. Gao, X. Luo, Catenary nanostructures as highly efficient and compact Bessel beam generators. Sci. Rep. 6, 20524 (2016)

    Article  CAS  Google Scholar 

  70. M. Khorasaninejad, Z. Shi, A.Y. Zhu, W.T. Chen, V. Sanjeev, A. Zaidi, F. Capasso, Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17, 1819–1824 (2017)

    Article  CAS  Google Scholar 

  71. A. Arbabi, E. Arbabi, S.M. Kamali, Y. Horie, S. Han, A. Faraon, Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016)

    Article  CAS  Google Scholar 

  72. Y. Xu, Y. Fu, H. Chen, Planar gradient metamaterials. Nat. Rev. Mater. 1, 16067 (2016)

    Article  CAS  Google Scholar 

  73. D. Lin, P. Fan, E. Hasman, M.L. Brongersma, Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014)

    Article  CAS  Google Scholar 

  74. P. Lalanne, P. Chavel, Metalenses at visible wavelengths: an historical fresco. Proc SPIE 10113, 101130F (2017)

    Google Scholar 

  75. A.A. Fathnan, D.A. Powell, Bandwidth and size limits of achromatic printed-circuit metasurfaces. Opt. Express 26, 29440–29450 (2018)

    Article  Google Scholar 

  76. W.T. Chen, A.Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso, A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018)

    Article  CAS  Google Scholar 

  77. S. Wang, P.C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H.Y. Kuo, B.H. Chen, Y.H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, D.P. Tsai, A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018)

    Article  CAS  Google Scholar 

  78. M. Planck, The Theory of Heat Radiation (P. Blakiston’s Son & Co., 1914)

    Google Scholar 

  79. K.N. Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans. Antennas Propag. 48, 1230–1234 (2000)

    Article  Google Scholar 

  80. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D.N. Futaba, M. Yumura, K. Hata, A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. U. S. A. 106, 6044–6047 (2009)

    Article  CAS  Google Scholar 

  81. C. Hu, Z. Zhao, X. Chen, X. Luo, Realizing near-perfect absorption at visible frequencies. Opt. Express 17, 11039–11044 (2009)

    Article  CAS  Google Scholar 

  82. A. Moreau, C. Ciraci, J.J. Mock, R.T. Hill, Q. Wang, B.J. Wiley, A. Chilkoti, D.R. Smith, Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 492, 86–89 (2012)

    Article  CAS  Google Scholar 

  83. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo, Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt. Express 19, 17413–17420 (2011)

    Article  CAS  Google Scholar 

  84. T.D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, T. Nagao, Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers. ACS Photonics 2, 964–970 (2015)

    Article  CAS  Google Scholar 

  85. Q. Feng, M. Pu, C. Hu, X. Luo, Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt. Lett. 37, 2133–2135 (2012)

    Article  CAS  Google Scholar 

  86. D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, L. Ran, Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption. Phys. Rev. Lett. 111, 187402 (2013)

    Article  CAS  Google Scholar 

  87. M.R. Singh, K. Davieau, J.J.L. Carson, Effect of quantum interference on absorption of light in metamaterial hybrids. J. Phys. Appl. Phys. 49, 445103 (2016)

    Article  CAS  Google Scholar 

  88. W.W. Salisbury, Absorbent body for electromagnetic waves, U.S. patent 2599944 (1952)

    Google Scholar 

  89. A. Naqavi, S.P. Loke, M.D. Kelzenberg, D.M. Callahan, T. Tiwald, E.C. Warmann, P. Espinet-González, N. Vaidya, T.A. Roy, J.-S. Huang, T.G. Vinogradova, H.A. Atwater, Extremely broadband ultralight thermally-emissive optical coatings. Opt. Express 26, 18545–18562 (2018)

    Article  CAS  Google Scholar 

  90. C. Hu, L. Liu, Z. Zhao, X. Chen, X. Luo, Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies. Opt. Express 17, 16745–16749 (2009)

    Article  CAS  Google Scholar 

  91. C. Wu, G. Shvets, Design of metamaterial surfaces with broadband absorbance. Opt. Lett. 37, 308–310 (2012)

    Article  Google Scholar 

  92. S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z.H. Hang, Y. Lai, B. Hou, M. Shen, C. Wang, Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation. Phys. Rev. B 91, 220301(R) (2015)

    Article  CAS  Google Scholar 

  93. M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, X. Luo, Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt. Express 20, 2246–2254 (2012)

    Article  CAS  Google Scholar 

  94. W. Wan, Y. Chong, L. Ge, H. Noh, A.D. Stone, H. Cao, Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011)

    Article  CAS  Google Scholar 

  95. S. Li, Q. Duan, S. Li, Q. Yin, W. Lu, L. Li, B. Gu, B. Hou, W. Wen, Perfect electromagnetic absorption at one-atom-thick scale. Appl. Phys. Lett. 107, 181112 (2015)

    Article  CAS  Google Scholar 

  96. M.A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M.M. Qazilbash, D.N. Basov, S. Ramanathan, F. Capasso, Ultra-thin perfect absorber employing a tunable phase change material. Appl. Phys. Lett. 101, 221101 (2012)

    Article  CAS  Google Scholar 

  97. P.-Y. Chen, C. Argyropoulos, A. Alù, Broadening the cloaking bandwidth with non-Foster metasurfaces. Phys. Rev. Lett. 111, 233001 (2013)

    Article  CAS  Google Scholar 

  98. X. Wu, C. Hu, Y. Wang, M. Pu, C. Huang, C. Wang, X. Luo, Active microwave absorber with the dual-ability of dividable modulation in absorbing intensity and frequency. AIP Adv. 3, 022114 (2013)

    Article  Google Scholar 

  99. A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014)

    Article  CAS  Google Scholar 

  100. Y. Huang, M. Pu, P. Gao, Z. Zhao, X. Li, X. Ma, X. Luo, Ultra-broadband large-scale infrared perfect absorber with optical transparency. Appl. Phys. Express 10, 112601 (2017)

    Article  Google Scholar 

  101. H.T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, K. Sakoda, Dual-band infrared metasurface thermal emitter for CO2 sensing. Appl. Phys. Lett. 105, 121107 (2014)

    Article  CAS  Google Scholar 

  102. A. Kohiyama, M. Shimizu, H. Yugami, Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems. Appl. Phys. Express 9, 112302 (2016)

    Article  CAS  Google Scholar 

  103. Y. Guo, C.L. Cortes, S. Molesky, Z. Jacob, Broadband super-Planckian thermal emission from hyperbolic metamaterials. Appl. Phys. Lett. 101, 131106 (2012)

    Article  CAS  Google Scholar 

  104. S.I. Maslovski, C.R. Simovski, S.A. Tretyakov, Overcoming black body radiation limit in free space: metamaterial superemitter. New J. Phys. 18, 013034 (2016)

    Article  CAS  Google Scholar 

  105. J.B. Pendry, Radiative exchange of heat between nanostructures. J. Phys.: Condens. Matter 11, 6621 (1999)

    CAS  Google Scholar 

  106. L. Hu, A. Narayanaswamy, X. Chen, G. Chen, Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law. Appl. Phys. Lett. 92, 133106 (2008)

    Article  CAS  Google Scholar 

  107. J. Ng, H. Chen, C.T. Chan, Metamaterial frequency-selective superabsorber. Opt. Lett. 34, 644–646 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangang Luo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, X. (2019). From Catenary Optics to Engineering Optics 2.0. In: Catenary Optics. Springer, Singapore. https://doi.org/10.1007/978-981-13-4818-1_9

Download citation

Publish with us

Policies and ethics