Skip to main content

Nonlinear Impairments in Fiber Optic Communication Systems: Analytical Review

  • Conference paper
  • First Online:
Futuristic Trends in Network and Communication Technologies (FTNCT 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 958))

Abstract

Fiber optic communications provides an enormous bandwidth for high speed data transmission. Optical fiber is an excellent transmission medium due to its robustness and low losses. However, the dispersive and nonlinear effects of an optical fiber may lead to signal distortions. In long haul communication systems, transmission impairments accumulate over the fiber distance and utterly distort the signal. By compensating for dispersive and nonlinear impairments the transmission performance can be significantly improved. In the present work, a theoretical analysis of various kinds of optical fiber nonlinearities, their thresholds and managements is carried out. Also, it focusses on various digital and optical methods to compensate for dispersive and nonlinear distortions, which significantly enhance transmission performance and system capacity. All over the paper, current applications dealing with these effects have been referred. The present paper will help the researchers in this field to find the aggregate material on the subject and further narrowing the topic selection for research work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, G.P.: Nonlinear Fiber Optics, 5th edn. Academic Press, Cambridge (2007)

    MATH  Google Scholar 

  2. Mollenauer, L.F., Evangelides, S.G., Gordon, J.P.: Wavelength division multiplexing with solitons in ultra-long distance transmission using lumped amplifiers. J. Light. Technol. 9(3), 362–367 (1991). (ISSN 1558-2213)

    Article  Google Scholar 

  3. Hasegawa, A., Kodama, Y., Kumar, S.: Reduction of collision-induced time jitters in dispersion-managed soliton transmission systems. Opt. Lett. 21(1), 39–41 (1996). https://doi.org/10.1364/OL.21.000039. (ISSN 1539-4794)

    Article  Google Scholar 

  4. Inoue, K.: Four wave mixing in an optical fiber in the zero-dispersion wavelength region. J. Light. Technol. 10(11), 1553–1561 (1992). https://doi.org/10.1109/50.184893. (ISSN 1558-2213)

    Article  Google Scholar 

  5. Tkach, R., Chraplyvy, A., Forghieri, F., Gnauck, A., Derosier, R.: Four photon mixing and high-speed WDM systems. J. Light. Technol. 13(5), 841–849 (1995)

    Article  Google Scholar 

  6. Agrawal, G.P.: Nonlinear Fiber Optics, 2nd edn. Academic Press, San Diego (1995)

    MATH  Google Scholar 

  7. Agrawal, G.P.: Nonlinear Fiber Optics, 3rd edn. Academic Press, San Diego (2001)

    MATH  Google Scholar 

  8. Boyd, R.: Nonlinear Optics. Academic Press, San Diego (1992)

    Google Scholar 

  9. Hellwarth, R.W., Cherlow, J., Yang, T.T.: Origin and frequency dependence of nonlinear optical susceptibilities of glasses. Phys. Rev. B 11(2), 964 (1975). (ISSN 1943-8206)

    Article  Google Scholar 

  10. Hellwarth, R.W.: Third-order optical susceptibilities of liquids and solids. Prog. Quantum Electron. 5(1-A), 1–68 (1977). https://doi.org/10.1364/JOSAB.2.000649. (ISSN 1520-8540)

    Article  Google Scholar 

  11. Shen, Y.R.: Principles of Nonlinear Optics. Wiley, New York (1984)

    Google Scholar 

  12. Stolen, R.H., Ippen, E.P.: Raman gain in glass optical waveguides. Appl. Phys. Lett. 22(6), 276 (1973). https://doi.org/10.1063/1.1654637

    Article  Google Scholar 

  13. Vilhelmsson, K.: Simultaneous forward and backward Raman scattering in low-attenuation single-mode fibers. J. Lightw. Technol. LT-4(4), 400–404 (1986). (ISSN 1558-2213)

    Article  Google Scholar 

  14. Smith, R.G.: Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering. Appl. Opt. 11(11), 2489 (1972). https://doi.org/10.1364/AO.11.002489. (ISSN 2155-3165)

    Article  Google Scholar 

  15. Ippen, E.P., Stolen, R.H.: Stimulated Brillouin scattering in optical fibers. Appl. Phys. Lett. 21(11), 539 (1972). https://doi.org/10.1063/1.1654249

    Article  Google Scholar 

  16. Stolen, R.H., Ippen, E.P., Tynes, A.R.: Raman oscillations in glass optical waveguides. Appl. Phys. Lett. 20(2), 62 (1972)

    Article  Google Scholar 

  17. Vanholsbeeck, F., Coen, S., Emplit, P., Haelterman, M., Thibaut, S.: Raman induced power tilt in arbitrarily large wavelength-division-multiplexed systems. IEEE Photon. Technol. Lett. 17(1), 88–90 (2005)

    Article  Google Scholar 

  18. Chi, H., Zou, X., Yao, J.: Analytical models for phase-modulation-based microwave photonic systems with phase modulation to intensity modulation conversion using a dispersive device. J. Light. Technol. 27(5), 511–521 (2009). (ISSN 1558-2213)

    Article  Google Scholar 

  19. Kumar, S., Nain, A.: Simulative Investigation of WDM RoF systems including the effect of the raman crosstalk using different modulators. Telecommun. Radio Eng. 75(14), 1243–1254 (2016)

    Article  Google Scholar 

  20. Wegener, L.G.L., Povinelli, M.L., Green, A.G., Mitra, P.P., Stark, J.B., Littlewood, P.B.: The effect of propagating nonlinearities on the information capacity of WDM optical fiber systems: cross-phase modulation and four-wave mixing. Physica D 189(1–2), 81–99 (2004)

    Article  Google Scholar 

  21. Wu, M., Way, W.I.: Fiber nonlinearity limitations in ultra-dense WDM systems. J. Lightw. Technol. 22(6), 1483–1498 (2004)

    Article  Google Scholar 

  22. Chraplyvy, A.R.: Limitations on lightwave communications imposed by fiber optic nonlinearities. J. Lightw. Technol. 8(10), 1548 (1990). (ISSN 1558-2213)

    Article  Google Scholar 

  23. Singh, S.P., Singh, N.: Non-linear effects in optical fibers: origin, management and applications. Prog. Electromagn. Res., PIER 73, 249–275 (2007). https://doi.org/10.2528/PIER07040201

    Article  Google Scholar 

  24. Mandal, B., Chowdhary, A.R.: Spatial soliton scattering in a quasi phase matched quadratic media in presence of cubic nonlinearity. J. Electromagn. Waves Appl. 21(1), 123–135 (2007)

    Article  Google Scholar 

  25. Nain, A., Kumar, S.: Performance investigation of different modulation schemes in RoF systems under the influence of self phase modulation. J. Opt. Commun. (2017). https://doi.org/10.1515/joc-2016-0155. DG Gruyter, (ISSN 2191-6322, ISSN (Print) 0173-4911)

    Article  Google Scholar 

  26. Jiang, Z., Fan, C.: A comprehensive study on XPM and SRS induced noise in cascaded IM-DD optical fiber transmission systems. J. Light. Technol. 21(4), 953–960 (2003)

    Article  Google Scholar 

  27. Subramaniam, S., Abbou, F.M., Chuah, H.T., Dambul, K.D.: Performance evaluation of SCM-WDM microcellular communication system in the presence of XPM. IEICE Electron. Express 2, 192–197 (2005). https://doi.org/10.1587/elex.2.192

    Article  Google Scholar 

  28. Kumar, N., Sharma, A.K., Kapoor, V.: Improved XPM-induced crosstalk with higher order dispersion in SCM–WDM optical transmission link. Optik 124, 941–944 (2014). https://doi.org/10.1016/j.ijleo.2012.02.040. (ISSN 0030-4026)

    Article  Google Scholar 

  29. Sharma, A.K., Arya, S.K.: Improved analysis for SRS and XPM induced crosstalk in SCM-WDM transmission link in the presence of HOD. Optik 120, 773–781 (2009)

    Article  Google Scholar 

  30. Yang, F.S., Marhic, M.E., Kazovsky, L.G.: Nonlinear crosstalk and two countermeasures in SCM–WDM optical communication systems. J. Light. Technol. 18(4), 512–520 (2000)

    Article  Google Scholar 

  31. Nain, A., Kumar, S., Singla, S.: Impact of XPM crosstalk on SCM-based RoF systems. J. Opt. Commun. (2016). https://doi.org/10.1515/joc-2016-0045. (ISSN 0173-4911)

  32. Toulouse, J.: Optical nonlinearities in fibers: review, recent examples, and systems applications. J. Light. Technol. 23(11), 3625 (2005)

    Article  Google Scholar 

  33. Singh, S.P., Kar, S., Jain, V.K.: Novel strategies for reducing FWM using modified repeated unequally spaced channel allocation. Fiber Integr. Opt. 6, 415–437 (2004)

    Article  Google Scholar 

  34. Hedekvist, P.O., Karlsson, M., Andrekson, P.A.: Fiber fourwave mixing demultiplexing with inherent parametric amplification. J. Light. Technol. 15(11), 2051–2058 (1997)

    Article  Google Scholar 

  35. Hansryd, J., Andrekson, P.A., Westlund, M., Li, J., Hedekvist, P.O.: Fiber-based optical parametric amplifiers and their applications. IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002)

    Article  Google Scholar 

  36. Ciaramella, E., Curti, F., Trillo, S.: All-optical signal reshaping by means of four-wave mixing in optical fibers. IEEE Photon. Technol. Lett. 13(2), 142–144 (2001)

    Article  Google Scholar 

  37. Li, S., Kuksenkov, D.V.: A novel dispersion monitoring technique based on four-wave mixing in optical fiber. IEEE Photon. Technol. Lett. 16(3), 942–944 (2004)

    Article  Google Scholar 

  38. Tsuji, K., Yokota, H., Saruwatari, A.M.: Influence of dispersion fluctuations on four-wave mixing efficiency in optical fibers. Electron. Commun. Jpn. (Part II: Electron.) 85(8), 16–24 (2002)

    Article  Google Scholar 

  39. Agrawal, G.P., Lin, Q.: Impact of polarization-mode dispersion on measurement of zero-dispersion wavelength through four-wave mixing. IEEE Photon. Technol. Lett. 15(12), 1719–1721 (2003)

    Article  Google Scholar 

  40. Lin, Q., Agrawal, G.P.: Vector theory of four-wave mixing: polarization effects in fiber-optic parametric amplifiers. J. Opt. Soc. Amer., B, Opt. Phys. 21(6), 1216–1224 (2004)

    Article  Google Scholar 

  41. Tomlinson, W.J., Stolen, R.H., Johnson, A.M.: Optical wave breaking of pulses in nonlinear optical fibers. Opt. Lett. 10(9), 457 (1985)

    Article  Google Scholar 

  42. Xu, W., Zhang, S., Chen, W., Luo, A., Liu, S.: Modulation instability of femtosecond pulses in dispersion-decreasing fibers. Opt. Commun. 199(5–6), 355–360 (2001)

    Article  Google Scholar 

  43. Hui, R., Sullivan, M.O., Robinson, A., Taylor, M.: Modulation instability and its impact in multi span optical amplified IMDD systems: theory and experiments. J. Lightw. Technol. 15(7), 1071–1082 (1997)

    Article  Google Scholar 

  44. Zhang, H., Wen, S., Han, W., Wu, J.: Generic features of modulation instability in optical fibers. In: Proceedings of SPIE—International Society for Optical Engineering, Wuhan, China, vol. 5279, no. 1, pp. 443–449 (2004)

    Google Scholar 

  45. Tanemura, T., Ozeki, Y., Kikuchi, K.: Modulational instability and parametric amplification induced by loss dispersion in optical fibers. Phys. Rev. Lett. 93(16), 163902-1–163902-4 (2004)

    Article  Google Scholar 

  46. Semrau, D., et al.: Achievable information rates estimates in optically amplified transmission systems using nonlinearity compensation and probabilistic shaping. Opt. Lett. 42(1), 121–124 (2017)

    Article  Google Scholar 

  47. Antos, A.J., Smith, D.K.: Design and characterization of dispersion compensating fiber based on the LP01 mode. J. Light. Technol. 12(10), 1739–1745 (1994)

    Article  Google Scholar 

  48. Hill, K., et al.: Chirped in-fiber Bragg gratings for compensation of optical fiber dispersion. Opt. Lett. 19(17), 1314–1316 (1994)

    Article  Google Scholar 

  49. Pepper, D.M., Yariv, A.: Compensation for phase distortions in nonlinear media by phase conjugation. Opt. Lett. 5(2), 59–60 (1980). https://doi.org/10.1364/OL.5.000059. (ISSN 1539-4794)

    Article  Google Scholar 

  50. Watanabe, S., Chikama, T.: Cancellation of four-wave mixing in multichannel fiber transmission by midway optical phase conjugation. Electron. Lett. 30(14), 1156–1157 (1994)

    Article  Google Scholar 

  51. Martelli, P., et al.: All-optical wavelength conversion of a 100-Gb/s polarization-multiplexed signal. Opt. Express 17(20), 17758–17763 (2009)

    Article  Google Scholar 

  52. Trapala, K.S., Inoue, T., Namiki, S.: Nearly-ideal optical phase conjugation based nonlinear compensation system. In: Optical Fiber Communication Conference, p. W3F.8. Optical Society of America (2014)

    Google Scholar 

  53. Kumar, S., Yang, D.: Optical backpropagation for fiber-optic communications using highly nonlinear fibers. Opt. Lett. 36(7), 1038–1040 (2011)

    Article  Google Scholar 

  54. Shao, J., Kumar, S.: Optical backpropagation for fiber-optic communications using optical phase conjugation at the receiver. Opt. Lett. 37(15), 3012–3014 (2012)

    Article  Google Scholar 

  55. Kumar, S., Shao, J.: Optical back propagation with optimal step size for fiber optic transmission systems. IEEE Photon. Technol. Lett. 25, 523–526 (2013)

    Article  Google Scholar 

  56. Cartledge, J.C., Guiomar, F.P., Kschischang, F.R., Liga, G., Yankov, M.P.: Digital signal processing for fiber nonlinearities. Opt. Express 25(3), 1916 (2017). https://doi.org/10.1364/OE.25.001916

    Article  Google Scholar 

  57. Li, G.: Recent advances in coherent optical communication. Adv. Opt. Photonics 1(2), 279–307 (2009)

    Article  Google Scholar 

  58. Taylor, M.G.: Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments. IEEE Photon. Technol. Lett. 16(2), 674–676 (2004). (ISSN 1041-1135)

    Article  Google Scholar 

  59. Savory, S.J.: Digital filters for coherent optical receivers. Opt. Express 16(2), 804–817 (2008)

    Article  Google Scholar 

  60. Goldfarb, G., Li, G.: Chromatic dispersion compensation using digital IIR filtering with coherent detection. IEEE Photon. Technol. Lett. 19(13), 969–971 (2007). (ISSN 1041-1135)

    Article  Google Scholar 

  61. Ip, E., Kahn, J.M.: Digital equalization of chromatic dispersion and polarization mode dispersion. J. Light. Technol. 25(8), 2033–2043 (2007)

    Article  Google Scholar 

  62. Rafique, D., Mussolin, M., Forzati, M., Martensson, J., Chugtai, M.N., Ellis, A.D.: Compensation of intra-channel nonlinear fiber impairments using simplified digital backpropagation algorithm. Opt. Express 19(10), 9453 (2011)

    Article  Google Scholar 

  63. Xu, T., et al.: Modulation format dependence of digital nonlinearity compensation performance in optical fiber communication systems. Opt. Express 25(4), 3311 (2017)

    Article  Google Scholar 

  64. Bayvel, P., et al.: Maximizing the optical network capacity. Phil. Trans. R. Soc. A 374, 20140440 (2016). https://doi.org/10.1098/rsta.2014.0440

    Article  Google Scholar 

  65. Rafique, D., Ellis, A.D.: Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems. Opt. Express 19, 3449–3454 (2011). https://doi.org/10.1364/oe.19.003449

    Article  Google Scholar 

  66. Gao, G., Chen, X., Shieh, W.: Influence of PMD on fiber nonlinearity compensation using digital back propagation. Opt. Express 20, 14406–14418 (2012). https://doi.org/10.1364/oe.20.014406

    Article  Google Scholar 

  67. Liga, G., Xu, T., Alvarado, A., Killey, R.I., Bayvel, P.: On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission. Opt. Express 22, 30053–30062 (2014). https://doi.org/10.1364/oe.22.030053

    Article  Google Scholar 

  68. Temprana, E., et al.: Twofold transmission reach enhancement enabled by transmitter-side digital backpropagation and optical frequency comb-derived information carriers. Opt. Express 23, 20774–20783 (2015). https://doi.org/10.1364/oe.23.020774

    Article  Google Scholar 

  69. Lavery, D., Ives, D., Liga, G., Alvarado, A., Savory, S.J., Bayvel, P.: The benefit of split nonlinearity compensation for optical fiber communications (2015). (http://arxiv.org/abs/1511.04028)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Payal, Kumar, S. (2019). Nonlinear Impairments in Fiber Optic Communication Systems: Analytical Review. In: Singh, P., Paprzycki, M., Bhargava, B., Chhabra, J., Kaushal, N., Kumar, Y. (eds) Futuristic Trends in Network and Communication Technologies. FTNCT 2018. Communications in Computer and Information Science, vol 958. Springer, Singapore. https://doi.org/10.1007/978-981-13-3804-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3804-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3803-8

  • Online ISBN: 978-981-13-3804-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics