Skip to main content

Data-Driven PID Tuning for Liquid Slosh-Free Motion Using Memory-Based SPSA Algorithm

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 538))

Abstract

This study proposes a data-driven PID tuning for liquid slosh suppression based on enhanced stochastic approximation. In particular, a new version of Simultaneous Perturbation Stochastic Approximation (SPSA) based on memory type function is introduced. This memory-based SPSA (M-SPSA) algorithm has the capability to obtain a better optimization accuracy than the conventional SPSA since it is able to keep the best design parameter during the tuning process. The effectiveness of this algorithm is tested to data-drive PID tuning for liquid slosh problem. The achievement of the M-SPSA based algorithm is assessed in terms of trajectory tracking of trolley position, slosh angle reduction and also computation time. The outcome of this study shows that the PID-tuned M-SPSA is able to provide better control performance accuracy than the other variant of SPSA based method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Budiansky, B.: Sloshing of liquids in circular canals and spherical tanks. J. Aerosp. Sci. 27(3), 161–173 (1960)

    Article  MathSciNet  Google Scholar 

  2. Fischer, D.: Dynamic fluid effects in liquid‐filled flexible cylindrical tanks. Earthquake Eng. Struct. Dyn. 7(6), 587–601 (1979)

    Article  Google Scholar 

  3. Dutta, S., Laha, M.K.: Analysis of the small amplitude sloshing of a liquid in a rigid container of arbitrary shape using a low-order boundary element method. Int. J. Numer. Methods Eng. 47(9), 1633–1648 (2000)

    Article  Google Scholar 

  4. Kang, X., Rakheja, S., Stiharu, I.: Effects of tank shape on the roll dynamic response of a partly filled tank vehicle. Veh. Syst. Dyn. 35(2), 75–102 (2001)

    Article  Google Scholar 

  5. Hasheminejad, S.M., Aghabeigi, M.: Liquid sloshing in half-full horizontal elliptical tanks. J. Sound Vib. 324(1–2), 332–349 (2009)

    Article  Google Scholar 

  6. Rebouillat, S., Liksonov, D.: Fluid–structure interaction in partially filled liquid containers: a comparative review of numerical approaches. Comput. Fluids 39(5), 739–746 (2010)

    Article  Google Scholar 

  7. Azadi, S., Jafari, A., Samadian, M.: Effect of tank shape on roll dynamic response of an articulated vehicle carrying liquids. Int. J. Heavy Veh. Syst. 21(3), 221–240 (2014)

    Article  Google Scholar 

  8. Kolaei, A., Rakheja, S., Richard, M.J.: Three-dimensional dynamic liquid slosh in partially-filled horizontal tanks subject to simultaneous longitudinal and lateral excitations. Eur. J. Mech. B/Fluids 53, 251–263 (2015)

    Article  MathSciNet  Google Scholar 

  9. Park, J.J., Kim, S.Y., Kim, Y., Seo, J.H., Jin, C.H., Joh, K.H., Kim, B.W., Suh, Y.S.: Study on tank shape for sloshing assessment of LNG vessels under unrestricted filling operation. J. Mar. Sci. Technol. 20(4), 640–651 (2015)

    Article  Google Scholar 

  10. Hasheminejad, S.M., Mohammadi, M.M.: Effect of anti-slosh baffles on free liquid oscillations in partially filled horizontal circular tanks. Ocean Eng. 38(1), 49–62 (2011)

    Article  Google Scholar 

  11. Biswal, K.C., Bhattacharyya, S.K., Sinha, P.K.: Free-vibration analysis of liquid-filled tank with baffles. J. Sound Vib. 259(1), 177–192 (2003)

    Article  Google Scholar 

  12. Modaressi-Tehrani, K., Rakheja, S., Stiharu, I.: Three-dimensional analysis of transient slosh within a partly-filled tank equipped with baffles. Veh. Syst. Dyn. 45(6), 525–548 (2007)

    Article  Google Scholar 

  13. Biswal, K.C., Bhattacharyya, S.K., Sinha, P.K.: Non-linear sloshing in partially liquid filled containers with baffles. Int. J. Num. Methods Eng. 68(3), 317–337 (2006)

    Article  Google Scholar 

  14. Kolaei, A., Rakheja, S., Richard, M.J.: A coupled multimodal and boundary-element method for analysis of anti-slosh effectiveness of partial baffles in a partly-filled container. Comput. Fluids 107, 43–58 (2015)

    Article  MathSciNet  Google Scholar 

  15. Wang, W., Guo, Z., Peng, Y., Zhang, Q.: A numerical study of the effects of the T-shaped baffles on liquid sloshing in horizontal elliptical tanks. Ocean Eng. 111, 543–568 (2016)

    Article  Google Scholar 

  16. Wang, Q.Y., Rakheja, S., Shangguan, W.B.: Effect of baffle geometry and air pressure on transient fluid slosh in partially filled tanks. Int. J. Heavy Veh. Syst. 24(4), 378–401 (2017)

    Article  Google Scholar 

  17. Liu, Z., Li, C.: Influence of slosh baffles on thermodynamic performance in liquid hydrogen tank. J. Hazard. Mat. 346, 253–262 (2018)

    Article  Google Scholar 

  18. Cheng, X., Jing, W., Gong, L.: Liquid sloshing problem in a concrete rectangular LSS with a vertical baffle. Arab. J. Sci. Eng. 1–12 (2018)

    Google Scholar 

  19. Pridgen, B., Bai, K., Singhose, W.: Slosh suppression by robust input shaping. In: Proceedings of IEEE Conference on Decision and Control, pp. 2316–2321 (2010)

    Google Scholar 

  20. Aboel-Hassan, A., Arafa, M., Nassef, A.: Design and optimization of input shapers for liquid slosh suppression. J. Sound Vib. 320(1–2), 1–15 (2009)

    Article  Google Scholar 

  21. Baozeng, Y., Lemei, Z.: Hybrid control of liquid-filled spacecraft maneuvers by dynamic inversion and input shaping. AIAA J. 52(3), 618–626 (2014)

    Article  Google Scholar 

  22. Kurode, S., Spurgeon, S.K., Bandyopadhyay, B., Gandhi, P.S.: Sliding mode control for slosh-free motion using a nonlinear sliding surface. IEEE/ASME Trans. Mech. 18(2), 714–724 (2013)

    Article  Google Scholar 

  23. Acarman, T., Ozguner, U.: Rollover prevention for heavy trucks using frequency shaped sliding mode control. In: Proceedings of 2003 IEEE Conference on Control Applications, pp. 7–12 (2003)

    Google Scholar 

  24. Bandyopadhyay, B., Kurode, S., Gandhi, P.S.: Sliding mode control for slosh-free motion—a class of underactuated system. Int. J. Adv. Mech. Syst. 1(3), 203–213 (2009)

    Google Scholar 

  25. Acarman, T., Ozguner, U.: Rollover prevention for heavy trucks using frequency shaped sliding mode control. Veh. Syst. Dyn. 44(10), 737–762 (2006)

    Article  Google Scholar 

  26. Richter, H.: Motion control of a container with slosh: constrained sliding mode approach. J. Dyn. Syst. Meas. Control 132(3), 031002 (2010)

    Article  Google Scholar 

  27. Shtessel, Y.B., Hall, C.E.: Multiple time scale sliding mode control of reusable launch vehicles in ascent and descent modes. In: Proceedings of the American Control Conference, pp. 4357–4362 (2001)

    Google Scholar 

  28. De Souza, L.C., De Souza, A.G.: Satellite attitude control system design considering the fuel slosh dynamics. Shock Vib. (2014)

    Google Scholar 

  29. De Souza, A.G., De Souza, L.C.: Satellite attitude control system design taking into account the fuel slosh and flexible dynamics. Math. Prob. Eng. (2014)

    Google Scholar 

  30. De Souza, A.G., De Souza, L.C.: Design of satellite attitude control system considering the interaction between fuel slosh and flexible dynamics during the system parameters estimation. Appl. Mech. Mat. 706, 14–24 (2015)

    Article  Google Scholar 

  31. Zhang, T., Yang, J.: Nonlinear dynamics and robust control of sloshing in a tank. J. Vib. Control, 1077546318772256 (2018)

    Google Scholar 

  32. Kuang, J., Leung., T.: H-infinity feedback for attitude control of liquid-filled spacecraft. J. Guidance Control Dyn. 24(1), 46–53 (2001)

    Google Scholar 

  33. Mishra, J.P., Kurode, S.R.: Robust output-feedback control for container-slosh system using variable gain super-twisting algorithm. In: 13th International Workshop on Variable Structure Systems, pp. 1–6 (2014)

    Google Scholar 

  34. Nair, A.P., Selvaganesan, N., Lalithambika, V.R.: Lyapunov based PD/PID in model reference adaptive control for satellite launch vehicle systems. Aerosp. Sci. Technol. 51, 70–77 (2016)

    Article  Google Scholar 

  35. Sira-Ramirez, H.: A flatness based generalized PI control approach to liquid sloshing regulation in a moving container. In: Proceedings of the American Control Conference, pp. 2909–2914 (2002)

    Google Scholar 

  36. Purnomo, D.S., Besari, A.R.A., Darojah, Z.: Control of liquid sloshing container using active force control method. In: IOP Conference Series: Materials Science and Engineering, p. 012007 (2017)

    Article  Google Scholar 

  37. Terzic, E., Nagarajah, R., Alamgir, M.: A neural network approach to fluid quantity measurement in dynamic environments. Mechatronics 21(1), 145–155 (2011)

    Article  Google Scholar 

  38. Hyun-Soo, K., Young-Shin, L.: Optimization design technique for reduction of sloshing by evolutionary methods. J. Mech. Sci. Technol. 22(1), 25–33 (2008)

    Article  Google Scholar 

  39. Mazmanyan, L., Ayoubi, M.A.: Takagi-Sugeno fuzzy model-based attitude control of spacecraft with partially-filled fuel tank. In: AIAA/AAS Astrodynamics Specialist Conference, p. 4215 (2014)

    Google Scholar 

  40. Mazmanyan, L., Ayoubi, M.A.: Fuzzy attitude control of spacecraft with fuel sloshing via linear matrix inequalities. IEEE Trans. Aerosp. Electron. Syst. (2018)

    Google Scholar 

  41. Shen, Y., Wang, Z.: Fuzzy control of liquid surface sloshing in liquid delivery. J. Shenyang Jianzhu Univ. (Natural Science) 4, 031 (2013)

    Google Scholar 

  42. Wang, Z., Wang, Q., Zhang, X.J.: An adaptive fuzzy sliding-mode technique for attitude control of launch vehicle. In: International Conference on Mechatronics and Automation, pp. 1587–1592 (2007)

    Google Scholar 

  43. Grundelius, M., Bernhardsson, B.: Constrained iterative learning control of liquid slosh in an industrial packaging machine. In Proceedings of IEEE Conference on Decision and Control, pp. 4544–4549 (2000)

    Google Scholar 

  44. Ahmad, M.A., Rohani, M.A., Raja Ismail, R.M.T., Mat Jusof, M.F., Suid, M.H., Nasir, A.N.K.: A model-free PID tuning to slosh control using simultaneous perturbation stochastic approximation. In: Proceedings of 5th IEEE International Conference on Control Systems, Computing and Engineering, pp. 343–347 (2015)

    Google Scholar 

  45. Ahmad, M.A., Azuma, S., Sugie, T.: Performance analysis of model-free PID tuning of MIMO systems based on simultaneous perturbation stochastic approximation. Expert Syst. Appl. 41(14), 6361–6370 (2014)

    Article  Google Scholar 

  46. Ahmad, M.A., Raja Ismail, R.M.T.: A data-driven sigmoid-based PI controller for buck-converter powered dc motor. In: Proceedings of IEEE Symposium on Computer Applications and Industrial Electronics (2017)

    Google Scholar 

  47. Bandyopadhyay, B., Gandhi, P.S., Kurode, S.: Sliding mode observer based sliding mode controller for slosh-free motion through PID scheme. IEEE Trans. Ind. Electron. 56(9), 3432–3442 (2009)

    Article  Google Scholar 

  48. Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Autom. Control 37(3), 332–341 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The study was funded by Research Grant RDU170104 from the University of Malaysia Pahang under Research and Innovation Department, and Ministry of Higher Education with reference no. JPT.S (BPKI) 2000/09/01 Jld.25 (29).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Ashraf Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mustapha, N.M.Z.A., Mohd Tumari, M.Z., Suid, M.H., Raja Ismail, R.M.T., Ahmad, M.A. (2019). Data-Driven PID Tuning for Liquid Slosh-Free Motion Using Memory-Based SPSA Algorithm. In: Md Zain, Z., et al. Proceedings of the 10th National Technical Seminar on Underwater System Technology 2018 . Lecture Notes in Electrical Engineering, vol 538. Springer, Singapore. https://doi.org/10.1007/978-981-13-3708-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3708-6_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3707-9

  • Online ISBN: 978-981-13-3708-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics