Skip to main content

iPS Cell Technology for Dissecting Cancer Epigenetics

  • Chapter
  • First Online:
  • 430 Accesses

Part of the book series: Current Human Cell Research and Applications ((CHCRA))

Abstract

A dynamic reorganization of epigenetic regulation takes place during cellular reprogramming. Given that reprogramming does not require changes in the underlying genome information, reprogramming technology can be used to actively modify the epigenetic regulation and thus is useful for studying the genome-epigenome relationship. Cancer cells harbor both genetic and epigenetic alterations. Although the causal role of genetic aberrations on cancer development has been well characterized by reverse genetics in vivo, the impact of epigenetic abnormalities remains to be fully understood, especially in vivo. Recent genome-wide sequencing studies have identified frequent mutations at epigenetic modifier genes, thus indicating that epigenetic alterations in cancer could be the consequence of genetic mutations. However, recent studies that utilized reprogramming technology for cancer research have demonstrated cellular context-associated epigenetic regulation that is independent of genetic mutations and plays a critical role on both the development and maintenance of cancer cells. In this review, we propose that reprogramming technology could be a powerful tool for dissecting the role of epigenetic regulation in cancer biology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AML:

Acute myeloid leukemia

DMRs:

Differentially methylated regions

ESCs:

Embryonic stem cells

GBM:

Glioblastoma

iPCCs:

Induced pluripotent cancer cells

iPSCs :

Induced pluripotent stem cells

LOH:

Loss of heterogeneity

NT-ESCs:

Nuclear transferred embryonic stem cells

PDAC:

Pancreatic ductal adenocarcinoma

PRC2:

Polycomb repressive complex 2

ROS:

Reactive oxygen species

RTCs:

Reprogrammed tumor cells

SAM:

S-adenosylmethyonine

SCNT:

Somatic cell nuclear transfer

TPCs:

Tumor-propagating cells

References

  1. Fearon ER, Hamilton SR, Vogelstein B. Clonal analysis of human colorectal tumors. Science (New York, NY). 1987;238:193–7.

    Article  CAS  Google Scholar 

  2. Nowell PC. The clonal evolution of tumor cell populations. Science (New York, NY). 1976;194:23–8.

    Article  CAS  Google Scholar 

  3. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–28. https://doi.org/10.1038/nrg816.

    Article  CAS  PubMed  Google Scholar 

  4. Hattori N, Ushijima T. Compendium of aberrant DNA methylation and histone modifications in cancer. Biochem Biophys Res Commun. 2014;455:3–9. https://doi.org/10.1016/j.bbrc.2014.08.140.

    Article  CAS  PubMed  Google Scholar 

  5. Kondo Y, Katsushima K, Ohka F, Natsume A, Shinjo K. Epigenetic dysregulation in glioma. Cancer Sci. 2014;105:363–9.

    Article  CAS  Google Scholar 

  6. Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301:89–92.

    Article  CAS  Google Scholar 

  7. Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R. DNA hypomethylation leads to elevated mutation rates. Nature. 1998;395:89–93. https://doi.org/10.1038/25779.

    Article  CAS  PubMed  Google Scholar 

  8. Gaudet F, et al. Induction of tumors in mice by genomic hypomethylation. Science (New York, NY). 2003;300:489–92. https://doi.org/10.1126/science.1083558.

    Article  CAS  Google Scholar 

  9. Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science (New York, NY). 2003;300:455. https://doi.org/10.1126/science.1083557.

    Article  CAS  Google Scholar 

  10. Laird PW, et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell. 1995;81:197–205.

    Article  CAS  Google Scholar 

  11. Yamada Y, et al. Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. Proc Natl Acad Sci U S A. 2005;102:13580–5. https://doi.org/10.1073/pnas.0506612102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hatano Y, et al. Reducing DNA methylation suppresses colon carcinogenesis by inducing tumor cell differentiation. Carcinogenesis. 2015;36:719–29. https://doi.org/10.1093/carcin/bgv060.

    Article  CAS  PubMed  Google Scholar 

  13. Lin H, et al. Suppression of intestinal neoplasia by deletion of Dnmt3b. Mol Cell Biol. 2006;26:2976–83. https://doi.org/10.1128/mcb.26.8.2976-2983.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Linhart HG, et al. Dnmt3b promotes tumorigenesis in vivo by gene-specific de novo methylation and transcriptional silencing. Genes Dev. 2007;21:3110–22. https://doi.org/10.1101/gad.1594007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349:2042–54. https://doi.org/10.1056/NEJMra023075.

    Article  CAS  PubMed  Google Scholar 

  16. Belinsky SA, et al. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci U S A. 1998;95:11891–6.

    Article  CAS  Google Scholar 

  17. Das PM, Singal R. DNA methylation and cancer. J Clin Oncol. 2004;22:4632–42. https://doi.org/10.1200/jco.2004.07.151.

    Article  CAS  PubMed  Google Scholar 

  18. Esteller M, et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000;92:564–9.

    Article  CAS  Google Scholar 

  19. Rainier S, et al. Relaxation of imprinted genes in human cancer. Nature. 1993;362:747–9. https://doi.org/10.1038/362747a0.

    Article  CAS  PubMed  Google Scholar 

  20. Ogawa O, et al. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms’ tumour. Nature. 1993;362:749–51. https://doi.org/10.1038/362749a0.

    Article  CAS  PubMed  Google Scholar 

  21. Bjornsson HT, et al. Epigenetic specificity of loss of imprinting of the IGF2 gene in Wilms tumors. J Natl Cancer Inst. 2007;99:1270–3. https://doi.org/10.1093/jnci/djm069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. DeBaun MR, et al. Epigenetic alterations of H19 and LIT1 distinguish patients with Beckwith-Wiedemann syndrome with cancer and birth defects. Am J Hum Genet. 2002;70:604–11. https://doi.org/10.1086/338934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ley TJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363:2424–33. https://doi.org/10.1056/NEJMoa1005143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schwartzentruber J, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482:226–31. https://doi.org/10.1038/nature10833.

    Article  CAS  PubMed  Google Scholar 

  25. Versteege I, et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature. 1998;394:203–6. https://doi.org/10.1038/28212.

    Article  CAS  PubMed  Google Scholar 

  26. Biegel JA, et al. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res. 1999;59:74–9.

    CAS  PubMed  Google Scholar 

  27. Jones S, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science (New York, NY). 2010;330:228–31. https://doi.org/10.1126/science.1196333.

    Article  CAS  Google Scholar 

  28. Wiegand KC, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 2010;363:1532–43. https://doi.org/10.1056/NEJMoa1008433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Couronne L, Bastard C, Bernard OA. TET2 and DNMT3A mutations in human T-cell lymphoma. N Engl J Med. 2012;366:95–6. https://doi.org/10.1056/NEJMc1111708.

    Article  CAS  PubMed  Google Scholar 

  30. Ribeiro AF, et al. Mutant DNMT3A: a marker of poor prognosis in acute myeloid leukemia. Blood. 2012;119:5824–31. https://doi.org/10.1182/blood-2011-07-367961.

    Article  CAS  PubMed  Google Scholar 

  31. Delhommeau F, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360:2289–301. https://doi.org/10.1056/NEJMoa0810069.

    Article  PubMed  Google Scholar 

  32. McCabe MT, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature. 2012;492:108–12. https://doi.org/10.1038/nature11606.

    Article  CAS  PubMed  Google Scholar 

  33. Morin RD, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010;42:181–5. https://doi.org/10.1038/ng.518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ernst T, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010;42:722–6. https://doi.org/10.1038/ng.621.

    Article  CAS  PubMed  Google Scholar 

  35. McKay JA, Waltham KJ, Williams EA, Mathers JC. Folate depletion during pregnancy and lactation reduces genomic DNA methylation in murine adult offspring. Genes Nutr. 2011;6:189–96. https://doi.org/10.1007/s12263-010-0199-1.

    Article  CAS  PubMed  Google Scholar 

  36. Sie KK, et al. Effect of maternal and postweaning folic acid supplementation on colorectal cancer risk in the offspring. Gut. 2011;60:1687–94. https://doi.org/10.1136/gut.2011.238782.

    Article  CAS  PubMed  Google Scholar 

  37. Wilson VL, Jones PA. DNA methylation decreases in aging but not in immortal cells. Science (New York, NY). 1983;220:1055–7.

    Article  CAS  Google Scholar 

  38. Wilson VL, Smith RA, Ma S, Cutler RG. Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem. 1987;262:9948–51.

    CAS  PubMed  Google Scholar 

  39. Talens RP, et al. Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell. 2012;11:694–703. https://doi.org/10.1111/j.1474-9726.2012.00835.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Issa JP, Vertino PM, Boehm CD, Newsham IF, Baylin SB. Switch from monoallelic to biallelic human IGF2 promoter methylation during aging and carcinogenesis. Proc Natl Acad Sci U S A. 1996;93:11757–62.

    Article  CAS  Google Scholar 

  41. Sakatani T, et al. Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice. Science (New York, NY). 2005;307:1976–8. https://doi.org/10.1126/science.1108080.

    Article  CAS  Google Scholar 

  42. Issa JP. Aging and epigenetic drift: a vicious cycle. J Clin Invest. 2014;124:24–9. https://doi.org/10.1172/jci69735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maekita T, et al. High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res. 2006;12:989–95. https://doi.org/10.1158/1078-0432.ccr-05-2096.

    Article  CAS  PubMed  Google Scholar 

  44. Schulmann K, et al. Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett’s-associated neoplastic progression and predicts progression risk. Oncogene. 2005;24:4138–48. https://doi.org/10.1038/sj.onc.1208598.

    Article  CAS  PubMed  Google Scholar 

  45. Moss SF, Blaser MJ. Mechanisms of disease: inflammation and the origins of cancer. Nat Clin Pract Oncol. 2005;2:90–7. https://doi.org/10.1038/ncponc0081. quiz 91 p following 113.

    Article  CAS  PubMed  Google Scholar 

  46. Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13:97–109. https://doi.org/10.1038/nrg3142.

    Article  CAS  PubMed  Google Scholar 

  47. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76. https://doi.org/10.1016/j.cell.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

  48. Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72. https://doi.org/10.1016/j.cell.2007.11.019.

    Article  CAS  PubMed  Google Scholar 

  49. Polo JM, et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell. 2012;151:1617–32. https://doi.org/10.1016/j.cell.2012.11.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chronis C, et al. Cooperative binding of transcription factors orchestrates reprogramming. Cell. 2017;168:442–459.e420. https://doi.org/10.1016/j.cell.2016.12.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ben-Porath I, et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008;40:499–507. https://doi.org/10.1038/ng.127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gidekel S, Pizov G, Bergman Y, Pikarsky E. Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell. 2003;4:361–70.

    Article  CAS  Google Scholar 

  53. Hochedlinger K, Yamada Y, Beard C, Jaenisch R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell. 2005;121:465–77. https://doi.org/10.1016/j.cell.2005.02.018.

    Article  CAS  PubMed  Google Scholar 

  54. Lu X, Mazur SJ, Lin T, Appella E, Xu Y. The pluripotency factor nanog promotes breast cancer tumorigenesis and metastasis. Oncogene. 2014;33:2655–64. https://doi.org/10.1038/onc.2013.209.

    Article  CAS  PubMed  Google Scholar 

  55. Boumahdi S, et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature. 2014;511:246–50. https://doi.org/10.1038/nature13305.

    Article  CAS  PubMed  Google Scholar 

  56. Blelloch RH, et al. Nuclear cloning of embryonal carcinoma cells. Proc Natl Acad Sci U S A. 2004;101:13985–90. https://doi.org/10.1073/pnas.0405015101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hochedlinger K, et al. Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev. 2004;18:1875–85. https://doi.org/10.1101/gad.1213504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fodde R. The APC gene in colorectal cancer. Eur J Cancer. 2002;38:867–71.

    Article  CAS  Google Scholar 

  59. Sanz MA, Martin G, Diaz-Mediavilla J. All-trans-retinoic acid in acute promyelocytic leukemia. N Engl J Med. 1998;338:393–4. https://doi.org/10.1056/nejm199802053380613.

    Article  CAS  PubMed  Google Scholar 

  60. Carette JE, et al. Generation of iPSCs from cultured human malignant cells. Blood. 2010;115:4039–42. https://doi.org/10.1182/blood-2009-07-231845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bernhardt M, et al. Melanoma-derived iPCCs show differential tumorigenicity and therapy response. Stem Cell Rep. 2017;8:1379–91. https://doi.org/10.1016/j.stemcr.2017.03.007.

    Article  CAS  Google Scholar 

  62. Hashimoto K, et al. Cellular context-dependent consequences of Apc mutations on gene regulation and cellular behavior. Proc Natl Acad Sci U S A. 2017;114:758–63. https://doi.org/10.1073/pnas.1614197114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim J, et al. An iPSC line from human pancreatic ductal adenocarcinoma undergoes early to invasive stages of pancreatic cancer progression. Cell Rep. 2013;3:2088–99. https://doi.org/10.1016/j.celrep.2013.05.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Suva ML, et al. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell. 2014;157:580–94. https://doi.org/10.1016/j.cell.2014.02.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shaffer SM, et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature. 2017;546:431–5. https://doi.org/10.1038/nature22794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stadtfeld M, Maherali N, Borkent M, Hochedlinger K. A reprogrammable mouse strain from gene-targeted embryonic stem cells. Nat Methods. 2010;7:53–5. https://doi.org/10.1038/nmeth.1409.

    Article  CAS  PubMed  Google Scholar 

  67. Abad M, et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature. 2013;502:340–5. https://doi.org/10.1038/nature12586.

    Article  CAS  PubMed  Google Scholar 

  68. Ohnishi K, et al. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell. 2014;156:663–77. https://doi.org/10.1016/j.cell.2014.01.005.

    Article  CAS  PubMed  Google Scholar 

  69. Ruteshouser EC, Robinson SM, Huff V. Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes Cancer. 2008;47:461–70. https://doi.org/10.1002/gcc.20553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hong H, et al. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature. 2009;460:1132–5. https://doi.org/10.1038/nature08235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li H, et al. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature. 2009;460:1136–9. https://doi.org/10.1038/nature08290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu XS, et al. Editing DNA methylation in the mammalian genome. Cell. 2016;167:233–247.e217. https://doi.org/10.1016/j.cell.2016.08.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Morita S, et al. Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat Biotechnol. 2016;34:1060–5. https://doi.org/10.1038/nbt.3658.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shibata, H., Yamada, Y. (2019). iPS Cell Technology for Dissecting Cancer Epigenetics. In: Inoue, H., Nakamura, Y. (eds) Medical Applications of iPS Cells . Current Human Cell Research and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-3672-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3672-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3671-3

  • Online ISBN: 978-981-13-3672-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics