Skip to main content

Reviews on Observer Metamerism and Individual Color Vision Variability

  • Conference paper
  • First Online:
Advances in Graphic Communication, Printing and Packaging

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 543))

Abstract

Significant color discrimination exists among color deficiency observers, while the color vision variability was used to being neglected among ordinary individuals. The standard observer is widely used in the traditional colorimetry for convenience with the observer metamerism phenomenon ignored. While with the contribution of physiology, psychophysics, color science and other areas, the study of color vision variability in individual observers goes further. This paper reviews on the past research works about observer metamerism and individual color vision variability according to its physiological influence factors, significance and quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuo, W. G. (1995). Quantification of metamerism and color constancy. Loughborough University of Technology.

    Google Scholar 

  2. CIE. (1987). International lighting vocabulary. Genève: Bureau Central de la Commission Electrotechnique Internationale.

    Google Scholar 

  3. Artigas, J. M., Felipe, A., et al. (2012). Spectral transmission of the human crystalline lens in adult and elderly persons. Investigative Ophthalmology Visual Science, 53(7), 4076–4084.

    Article  Google Scholar 

  4. Berendschot, T. T. J. M. (2002). Lens aging in relation to nutritional determinants and possible risk factors for age-related cataract. Archives of Ophthalmology, 120(12), 1732–1737.

    Article  Google Scholar 

  5. Norren, D. V., & Vos, J. J. (1974). Spectral transmission of the human ocular media. Vision Research, 14(11), 1237–1244. https://doi.org/10.1016/0042-6989(74)90222-3.

    Article  Google Scholar 

  6. Crawford, B. H. (1949). The scotopic visibility function. Proceedings of the Physical Society. Section B, 62(5), 321–334. https://doi.org/10.1088/0370-1301/62/5/305.

    Article  Google Scholar 

  7. Pokorny, J., Smith, V. C., & Lutze, M. (1987). Aging of the human lens. Applied Optics, 26(8), 1437–1440. https://doi.org/10.1364/AO.26.001437.

    Article  Google Scholar 

  8. Backhaus, W., Kliegl, R., & Werner, J. S. (1998). Color vision: Perspectives from different disciplines. Berlin: Walter de Gruyter.

    Book  Google Scholar 

  9. Werner, J. S., & Schefrin, B. E. (1993). Loci of achromatic points throughout the life span. Journal of the Optical Society of America A, 10(7), 1509.

    Google Scholar 

  10. Schefrin, B. E., & Werner, J. S. (1993). Age-related changes in the color appearance of broadband surfaces. Color Research & Application, 18(6), 380–389.

    Google Scholar 

  11. Xu, J., Pokorny, J., & Smith, V. C. (1997). Optical density of the human lens. Journal of the Optical Society of America A, 14(5), 953.

    Google Scholar 

  12. Lutze, M., & Bresnick, G. H. (1991). Lenses of diabetic patients “yellow” at an accelerated rate similar to older normals. Investigative Ophthalmology & Visual Science, 32(1), 194–199.

    Google Scholar 

  13. Ambach, W., Blumthaler, M., et al. (1994). Spectral transmission of the optical media of the human eye with respect to keratitis and cataract formation. Documenta Ophthalmologica, 88(2), 165–173.

    Article  Google Scholar 

  14. Hammond, B. R., Wooten, B. R., et al. (1999). Smoking and lens optical density. Ophthalmic & Physiological Optics the Journal of the British College of Ophthalmic Opticians, 19(4), 300–305.

    Article  Google Scholar 

  15. Sarkar, A. (2011). Identification and assignment of colorimetric observer categories and their applications in color and vision sciences. School of Computer and Communication.

    Google Scholar 

  16. Howells, O., Eperjesi, F., & Bartlett, H. (2013). Macular pigment optical density in young adults of South Asian origin. Investigative Ophthalmology & Visual Science, 54(4), 2711–2719.

    Article  Google Scholar 

  17. Iannaccone, A., Mura, M., et al. (2007). Macular pigment optical density in the elderly: Findings in a large biracial Midsouth population sample. Investigative Ophthalmology & Visual Science, 48(4), 1458–1465.

    Article  Google Scholar 

  18. Ciulla, T. A., Curran-Celantano, J., Cooper, D. A., Hammond Jr, B. R., Danis, R. P., Pratt, L. M., Riccardi, K. A., & Filloon, T. G. (2001). Macular pigment optical density in a midwestern sample. Ophthalmology, 108(4), 730–737.

    Google Scholar 

  19. Bone, R. A., Landrum, J. T., Guerra, L. H., & Ruiz, C. A. (2003). Lutein and zeaxanthin dietary supplements raise macular pigment density and serum concentrations of these carotenoids in humans. The Journal of Nutrition, 133(4), 992–998.

    Google Scholar 

  20. Nolan, J., O’Donovan, O., Kavanagh, H., et al. (2004). Macular pigment and percentage of body fat. Investigative Ophthalmology & Visual Science, 45(11), 3940–3950.

    Article  Google Scholar 

  21. Thomas, P. B. M., Formankiewicz, M. A., & Mollon, J. D. (2011). The effect of photopigment optical density on the color vision of the anomalous trichromat. Vision Research, 51(20), 2224–2233.

    Article  Google Scholar 

  22. Neitz, J., Neitz, M., He, J. C., et al. (1999). Trichromatic color vision with only two spectrally distinct photopigments. Nature Neuroscience, 2(10), 884–888. https://doi.org/10.1038/13185.

    Article  Google Scholar 

  23. Asano, Y. (2015). Individual colorimetric observers for personalized color imaging. Rochester Institute of Technology.

    Google Scholar 

  24. Maxwell, J. C. (1860). On the theory of compound colours, and the relations of the colours of the spectrum. Philosophical Transactions of the Royal Society of London, 10, 404–409.

    Google Scholar 

  25. Wright, W. D. (1928). A trichromatic colorimeter with spectral primaries. Transactions of the Optical Society, 29(5), 225–242. https://doi.org/10.1088/1475-4878/29/5/302.

    Article  Google Scholar 

  26. Wright, W. D. (1929). A re-determination of the trichromatic coefficients of the spectral colours. Transactions of the Optical Society, 30(4), 141–164. https://doi.org/10.1088/1475-4878/30/4/301.

    Article  Google Scholar 

  27. Guild, J. (1932). The colorimetric properties of the spectrum. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 230, 149–187.

    Article  Google Scholar 

  28. Stiles, W.S., & Burch, J.M. (2010). N.P.L. colour-matching investigation: Final report (1958). Optica Acta: International Journal of Optics, 6(1), 1–26.

    Google Scholar 

  29. Speranskaya, N. I. (1959). Determination of spectrum color coordinates for 27 normal observers. Optics and Spectroscopy, 7, 424.

    Google Scholar 

  30. Nayatani, Y., Takahama, K., & Sobagaki, H. (1983). A proposal of new standard deviate observers. Color Research & Application, 8(1), 47–56.

    Article  Google Scholar 

  31. Fairchild, M. D., & Heckaman, R. L. (2016). Measuring observer metamerism: The Nimeroff approach. Color Research & Application, 41(2), 115–124.

    Article  Google Scholar 

  32. CIE. (2006). Fundamental chromaticity diagram with physiological axes. Vienna: Commission Internationale de l’ Éclairage.

    Google Scholar 

Download references

Acknowledgments

Thanks for the laboratory innovation funds of Tianjin University of Science and Technology, No. 1706A201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyan Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Q., Feng, L., Li, Y., Cai, S. (2019). Reviews on Observer Metamerism and Individual Color Vision Variability. In: Zhao, P., Ouyang, Y., Xu, M., Yang, L., Ren, Y. (eds) Advances in Graphic Communication, Printing and Packaging. Lecture Notes in Electrical Engineering, vol 543. Springer, Singapore. https://doi.org/10.1007/978-981-13-3663-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3663-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3662-1

  • Online ISBN: 978-981-13-3663-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics