Skip to main content

Estimation of Lake Level Using Tiangong-2 InIRA Data

  • Conference paper
  • First Online:
Proceedings of the Tiangong-2 Remote Sensing Application Conference

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 541))

Abstract

Tiangong-2 space laboratory, launched on 15 September, 2016, carries an Interferometric Imaging Radar Altimeter (InIRA). InIRA can conduct interferometry of ocean and land with high precision and wide swath. In this study, nine Qinghai-Tibet Plateau lakes are selected to analyze the preliminary performance of lake level estimation using the InIRA data. Based on bias and standard deviation of estimated lake level, the lake levels obtained from InIRA Level1 data (InIRA lake levels) are compared with the lake levels directly derived from Cryosat-2 Synthetic Aperture Radar interferometry (SARin) Level1b (L1b) data, and the accurate lake levels obtained from the retracking Cryosat-2 SARin L1b data. The results show that the bias of absolute InIRA lake levels is 4.105 m, and the mean standard deviation of InIRA point lake levels is 1.063 m. It indicates that InIRA Level1 data is more stable than Cryosat-2 SARin L1b data and relative lake levels with high precision can be expected to estimate using the further processed InIRA data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crétaux, J.F., Birkett, C.: Lake studies from satellite radar altimetry. Comptes Rendus Geosci. 338(14–15), 1098–1112 (2006)

    Article  Google Scholar 

  2. Birkett, C.M.: The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. J. Geophys. Res. Atmos. 100(C12), 25179–25204 (1995)

    Article  Google Scholar 

  3. Morris, C.S., Gill, S.K.: Evaluation of the TOPEX/POSEIDON altimeter system over the Great Lakes. J. Geophys. Res. Ocean. 99(C12), 24527–24539 (1994)

    Article  Google Scholar 

  4. Gao, L., Liao, J., Shen, G.: Monitoring lake-level changes in the Qinghai-Tibetan Plateau using radar altimeter data (2002–2012). J. Appl. Remote Sens. 7(1), 073470 (2013)

    Article  Google Scholar 

  5. Liao, J., Gao, L., Wang, X.: Numerical simulation and forecasting of water level for qinghai lake using multi-altimeter data between 2002 and 2012. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 7(7), 609–622 (2014)

    Article  Google Scholar 

  6. Jiang, L., Nielsen, K., Andersen, O.B., Bauer-Gottwein, P.: Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn mode data. J. Hydrol. 544, 109–124 (2017)

    Article  Google Scholar 

  7. Crétaux, J.F., Abarca-Del-Río, R., Bergé-Nguyen, M., et al.: Lake volume monitoring from space. Surv. Geophys. 37(2), 269–305 (2016)

    Article  Google Scholar 

  8. Xu, Y., Gao, L., Zhang, Y.: New generation altimetry satellite SWOT and its reference to China’s swath altimetry satellite. Remote. Sens. Technol. Appl. 32(1), 84–94 (2017). (In Chinese)

    Google Scholar 

  9. Sui, X., Zhang, R., Wan, X.: Research on microwave interferometric altimetry systems and performances. Spacecr. Eng. 25(2), 13–18 (2016). (In Chinese)

    Google Scholar 

  10. Nielsen, K., Stenseng, L., Andersen, O.B., Villadsen, H., Knudsen, P.: Validation of CryoSat-2 SAR mode based lake levels. Remote Sens. Environ. 171, 162–170 (2015)

    Article  Google Scholar 

  11. Villadsen, H., Deng, X., Andersen, O.B., Stenseng, L., Nielsen, K., Knudsen, P.: Improved inland water levels from SAR altimetry using novel empirical and physical retrackers. J. Hydrol. 537, 234–247 (2016)

    Article  Google Scholar 

  12. Göttl, F., Dettmering, D., Müller, F., et al.: Lake level estimation based on CryoSat-2 SAR altimetry and multi-looked waveform classification. Remote. Sens. 8(11), 885–901 (2016)

    Article  Google Scholar 

  13. Kleinherenbrink, M., Ditmar, P., Lindenbergh, R.: Retracking cryosat data in the SARin mode and robust lake level extraction. Remote Sens. Environ. 152, 38–50 (2014)

    Article  Google Scholar 

  14. Kleinherenbrink, M., Lindenbergh, R.C., Ditmar, P.G.: Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms. J. Hydrol. 521, 119–131 (2015)

    Article  Google Scholar 

  15. Tourian, M., Elmi, O., Chen, Q., Devaraju, B., Roohi, S., Sneeuw, N.: A spaceborne multisensor approach to monitor the desiccation of Lake Urmia in Iran. Remote Sens. Environ. 156, 349–360 (2015)

    Article  Google Scholar 

  16. Villadsen, H., Andersen, O.B., Stenseng, L., Nielsen, K., Knudsen, P.: CryoSat-2 altimetry for river level monitoring—evaluation in the Ganges-Brahmaputra river basin. Remote Sens. Environ. 168, 80–89 (2015)

    Article  Google Scholar 

  17. Bao, Q., Lin, M., Zhang, Y., et al.: Wind speed inversion for imaging microwave altimeter. J. Remote. Sens. 21(6), 835–841 (2017). (In Chinese)

    Google Scholar 

  18. European Space Agency (ESA). CryoSat-2 Product Handbook[OL]. https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/cryosat

  19. Wan, W., Xiao, P., Feng, X., et al.: Monitoring lake changes of Qinghai-Tibet Plateau over the past 30 years using satellite remote sensing data. Chin. Sci. Bull. 8(8), 701–714 (2014)

    Google Scholar 

  20. Gao, L.: Monitoring the changes in lake level and glacier elevation in the Qinghai-Tibet Plateau using satellite altimetry data. Ph.D. Dissertation of University of Chinese Academy of Sciences (2014). (In Chinese)

    Google Scholar 

  21. He, P.: Some methods of deleting inordinate values from measuring data. Aviat. Metrol. Meas. Technol. 15(1), 19–22 (1995). (In Chinese)

    Google Scholar 

Download references

Acknowledgments

This research was funded by the National Key Research and Development Program of China (2016YFB0501501), and the National Natural Science Foundation of China (41871256). We thank the China Manned Space Engineering for providing the InIRA data products of Tiangong-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjuan Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liao, J., Xue, H. (2019). Estimation of Lake Level Using Tiangong-2 InIRA Data. In: Gu, Y., Gao, M., Zhao, G. (eds) Proceedings of the Tiangong-2 Remote Sensing Application Conference. Lecture Notes in Electrical Engineering, vol 541. Springer, Singapore. https://doi.org/10.1007/978-981-13-3501-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3501-3_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3500-6

  • Online ISBN: 978-981-13-3501-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics