Skip to main content

Performance Evaluation of Unitary Measurement Matrix in Compressed Data Gathering for Real-Time Wireless Sensor Network Applications

  • Chapter
  • First Online:
  • 322 Accesses

Abstract

Recently, compressed sensing has emerged as a novel phenomenon of simultaneous sampling and compressing any sparse signal. Wireless sensor network which is resource constrained requires to preserve its energy by various mechanisms. Each sensor node in wireless sensor network records the data in its surrounding which generates number of signals in the entire network. Communication process consumes maximum energy in the network as compared to other in network processes. So, energy may be preserved by reducing data rate in network by using distributed compressed sensing. In this paper, we propose to use a unitary matrix as measurement matrix to perform distributed compressed sensing to exploit both spatial and temporal correlation in sensor network data. The parameters used for measuring performance of the proposed scheme are the percentage by which overall network lifetime increases and the mean squared error in reconstruction of the original signal from compressed signal at the sink.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Computer Networks, 38(4), 393–422. https://doi.org/10.1016/s1389-1286(01)00302-4. URL: http://www.sciencedirect.com/science/article/pii/S1389128601003024.

    Article  Google Scholar 

  2. Biagioni, E. S., & Bridges, K. (2002). The application of remote sensor technology to assist the recovery of rare and endangered species. The International Journal of High Performance Computing Applications, 16(3), 315–324. https://doi.org/10.1177/10943420020160031001.

    Article  Google Scholar 

  3. Dhaka, V. S., & Vyas, S. (2014). The use and industrial importance of virtual databases.

    Google Scholar 

  4. Gungor, V. C., & Hancke, G. P. (2009). Industrial wireless sensor networks: Challenges, design principles, and technical approaches. IEEE Transactions on Industrial Electronics, 56(10), 4258–4265. https://doi.org/10.1109/TIE.2009.2015754.

    Article  Google Scholar 

  5. Kandukuri, S., Lebreton, J., Lorion, R., Murad, N., & Lan-Sun-Luk, J. D. (2016). Energy efficient data aggregation techniques for exploiting spatio-temporal correlations in wireless sensor networks. In 2016 Wireless Telecommunications Symposium (WTS), pp. 1–6. https://doi.org/10.1109/wts.2016.7482055.

  6. Vyas, V., Saxena, S., & Bhargava, D. (2015). Mind reading by face recognition using security enhancement model. In Proceedings of Fourth International Conference on Soft Computing for Problem Solving (pp. 173–180). New Delhi: Springer.

    Google Scholar 

  7. Haviv, I., & Regev, O. (2016). The restricted isometry property of subsampled Fourier matrices. In Proceedings of the Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’16 (pp. 288–297). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA. URL: http://dl.acm.org/citation.cfm?id=2884435.2884457.

  8. Bhargava, D., & Sinha, M. (2012, May). Performance analysis of agent based IPSM. In 2012 International Joint Conference on Computer Science and Software Engineering (JCSSE) (pp. 253–258). IEEE.

    Google Scholar 

  9. Bhargava, D. (2017). Intelligent agents and autonomous robots. In Detecting and mitigating robotic cyber security risks (pp. 275–283). IGI Global.

    Google Scholar 

  10. Dhaka, V. S., & Vyas, S. (2014). Analysis of server performance with different techniques of virtual databases. Journal of Emerging Trends in Computing and Information Sciences, 5(10).

    Google Scholar 

  11. Candes, E. J. (2006). Compressive sampling. In International Congress of Mathematicians (Vol. 3, pp. 1433–1452).

    Google Scholar 

  12. Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306. https://doi.org/10.1109/TIT.2006.871582.

    Article  MathSciNet  MATH  Google Scholar 

  13. Candes, E. J., & Tao, T. (2005). Decoding by linear programming. IEEE Transactions on Information Theory, 51(12), 4203–4215. https://doi.org/10.1109/tit.2005.858979.

    Article  MathSciNet  MATH  Google Scholar 

  14. Davis, G., Mallat, S., & Avellaneda, M. (1997). Adaptive greedy approximations. Constructive Approximation, 13(1), 57–98. https://doi.org/10.1007/bf02678430.

    Article  MathSciNet  MATH  Google Scholar 

  15. Bhargava, D., & Sinha, M. (2012). Design and implementation of agent based inter process synchronization manager. International Journal of Computers and Applications, 46(21), 17–22.

    Google Scholar 

  16. Chen, S. S., Donoho, D. L., & Saunders, M. A. (2001). Atomic decomposition by basis pursuit. SIAM Review, 43(1), 129–159.

    Article  MathSciNet  Google Scholar 

  17. Gorodnitsky, I. F., & Rao, B. D. (1997). Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 45(3), 600–616.

    Article  Google Scholar 

  18. Vyas, S., & Vaishnav, P. (2017). A comparative study of various ETL process and their testing techniques in data warehouse. Journal of Statistics and Management Systems, 20(4), 753–763.

    Article  Google Scholar 

  19. Liu, C., Wu, K., & Pei, J. (2007). An energy-efficient data collection framework for wireless sensor networks by exploiting spatiotemporal correlation. IEEE Transactions on Parallel and Distributed Systems, 18(7), 1010–1023. https://doi.org/10.1109/TPDS.2007.1046.

    Article  Google Scholar 

  20. Agrawal, C., & Ghosh, D. (2012). Distributed compressive data gathering in wireless sensor networks. In 2012 IEEE 11th International Conference on Signal Processing (ICSP) (Vol. 3, pp. 2110–2115). https://doi.org/10.1109/icosp.2012.6491998.

  21. Bajwa, W. U., Sayeed, A. M., & Nowak, R. (2009). A restricted isometry property for structurally-subsampled unitary matrices. In 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (pp. 1005–1012). https://doi.org/10.1109/allerton.2009.5394883.

  22. Purohit, R., & Bhargava, D. (2017). An illustration to secured way of data mining using privacy preserving data mining. Journal of Statistics and Management Systems, 20(4), 637–645.

    Article  Google Scholar 

  23. Luo, C., Wu, F., Sun, J., & Chen, C.W. (2009). Compressive data gathering for largescale wireless sensor networks. In Proceedings of the 15th Annual International Conference on Mobile Computing and Networking, MobiCom’09 (pp. 145–156). New York, NY, USA: ACM. https://doi.org/10.1145/1614320.1614337. URL: http://doi.acm.org/10.1145/1614320.1614337.

  24. Mao, X., Miao, X., He, Y., Li, X. Y., & Liu, Y. (2012). Citysee: Urban CO2 monitoring with sensors. In 2012 Proceedings IEEE INFOCOM (pp. 1611–1619). https://doi.org/10.1109/infcom.2012.6195530.

  25. Siavoshi, S., Kavian, Y. S., & Sharif, H. (2016). Load-balanced energy efficient clustering protocol for wireless sensor networks. IET Wireless Sensor Systems, 6(3), 67–73. https://doi.org/10.1049/iet-wss.2015.0069.

    Article  Google Scholar 

  26. Tan, L., & Wu, M. (2016). Data reduction in wireless sensor networks: A hierarchical LMS prediction approach. IEEE Sensors Journal, 16(6), 1708–1715. https://doi.org/10.1109/JSEN.2015.2504106.

    Article  Google Scholar 

  27. Kumar, N., & Bhargava, D. (2017). A scheme of features fusion for facial expression analysis: A facial action recognition. Journal of Statistics and Management Systems, 20(4), 693–701.

    Article  Google Scholar 

  28. Bhargava, D., & Sinha, M. (2013). Performance analysis of agent based IPSM for windows based operating systems. International Journal of Soft Computing and Engineering (IJSCE).

    Google Scholar 

  29. Tropp, J. A., Gilbert, A. C., & Strauss, M. J. (2006). Algorithms for simultaneous sparse approximation: Part I: Greedy pursuit. Signal Process, 86(3), 572–588.

    Article  Google Scholar 

  30. Wakin, M. B., Duarte, M. F., Sarvotham, S., Baron, D., & Baraniuk, R. G. (2005). Recovery of jointly sparse signals from few random projections. In Proceedings of the 18th International Conference on Neural Information Processing Systems, NIPS’05 (pp. 1433–1440). Cambridge, MA, USA: MIT Press.

    Google Scholar 

  31. Wang, J., Liu, Y., & Das, S. K. (2010). Energy-efficient data gathering in wireless sensor networks with asynchronous sampling. ACM Transactions on Sensor Networks, 6(3), 22:1–22:37. https://doi.org/10.1145/1754414.1754418. URL: http://doi.acm.org/10.1145/1754414.1754418.

    Article  Google Scholar 

  32. Youness, N., & Hassan, K. (2014). Energy preservation in large-scale wireless sensor network utilizing distributed compressive sensing. In 2014 IEEE 10th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 251–256). https://doi.org/10.1109/wimob.2014.6962179.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prateek Dolas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dolas, P., Ghosh, D. (2019). Performance Evaluation of Unitary Measurement Matrix in Compressed Data Gathering for Real-Time Wireless Sensor Network Applications. In: Bhargava, D., Vyas, S. (eds) Pervasive Computing: A Networking Perspective and Future Directions. Springer, Singapore. https://doi.org/10.1007/978-981-13-3462-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3462-7_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3461-0

  • Online ISBN: 978-981-13-3462-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics