Skip to main content

Contribution of the Gut and Vaginal Microbiomes to Gynecological Cancers

  • Chapter
  • First Online:
Preventive Oncology for the Gynecologist

Abstract

The objective of the current chapter is to give insights into the different ways by which microbiota in the gastrointestinal and the lower genital tract can promote gynecological malignancies. Microbes have coevolved with humans over millions of years and form an essential part of the normal flora in certain parts of the body. While a healthy site comprises optimal proportions and/or types of microbes termed as “eubiosis”, disease as represented by disproportion in either numbers and/or types of microbes is called “dysbiosis”. While eubiosis is absolutely required for normal physiology, e.g., the development and functioning of the immune system and homeostasis at the colonized site, the role of dysbiosis in causing various diseases like obesity, diabetes, autoimmunity, and cancers has been appreciated only recently. Microbes comprise one of the major factors, which determine whether there would be “war” or “peace” at specific sites. Gut dysbiosis may predispose a woman toward developing gynecological cancers by regulating circulating levels of estrogen and/or other metabolites like melatonin or by modulating inflammation at the systemic level. Cervicovaginal microflora regulate the local microenvironment of the tissues, and so, dysbiosis may assist establishment of oncogenic pathogens, prolonged inflammation, and/or immunosuppression, each of which contribute toward oncogenesis. From the perspective of prevention of gynecological malignancies, consumption of diets rich in phytochemicals, timely intervention in the treatment of genital infections, and maintaining eubiosis both at the gastrointestinal and cervicovaginal mucosa may certainly help.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012;70:S38–44.

    Article  PubMed  Google Scholar 

  2. Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977;31:107–33.

    Article  CAS  PubMed  Google Scholar 

  3. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312:1355–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13:800–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–48.

    Article  CAS  PubMed  Google Scholar 

  6. Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. J Physiol. 2009;587:4153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature. 2010;464:908–12.

    Article  CAS  PubMed  Google Scholar 

  8. Relman DA. The human microbiome: ecosystem resilience and health. Nutr Rev. 2012;70:S2–9.

    Article  PubMed  Google Scholar 

  9. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449:804–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liang D, Leung RK, Guan W, Au WW. Involvement of gut microbiome in human health and disease: brief overview, knowledge gaps and research opportunities. Gut Pathog. 2018;10:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Peterson CT, Denniston K, Chopra D. Therapeutic uses of Triphala in Ayurvedic medicine. J Altern Complement Med. 2017;23:607–14.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Eswaran HT, Kavita MB, Tripaty TB, Shivakumar. Formation and validation of questionnaire to assess Jātharāgni. Anc Sci Life. 2015;34:203–9.

    Google Scholar 

  13. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157:121–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen-gut microbiome axis: physiological and clinical implications. Maturitas. 2017;103:45–53.

    Article  CAS  PubMed  Google Scholar 

  15. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20:159–66.

    Article  CAS  PubMed  Google Scholar 

  16. Guo Y, Qi Y, Yang X, Zhao L, Wen S, Liu Y, et al. Association between polycystic ovary syndrome and gut microbiota. PLoS One. 2016;11:e0153196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science. 2013;339:1084–8.

    Article  CAS  PubMed  Google Scholar 

  18. Plottel CS, Blaser MJ. Microbiome and malignancy. Cell Host Microbe. 2011;10:324–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106:3698–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.

    Article  PubMed  Google Scholar 

  21. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139:485–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32:815–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453:620–5.

    Article  CAS  PubMed  Google Scholar 

  24. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500:232–6.

    Article  CAS  PubMed  Google Scholar 

  25. Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107:12204–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao J, Xu K, Liu H, Liu G, Bai M, Peng C, et al. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol. 2018;8:13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Huang T, Wei B, Velazquez P, Borneman J, Braun J. Commensal microbiota alter the abundance and TCR responsiveness of splenic naive CD4+ T lymphocytes. Clin Immunol. 2005;117:221–30.

    Article  CAS  PubMed  Google Scholar 

  28. Ostman S, Rask C, Wold AE, Hultkrantz S, Telemo E. Impaired regulatory T cell function in germ-free mice. Eur J Immunol. 2006;36:2336–46.

    Article  PubMed  CAS  Google Scholar 

  29. Belkaid Y, Naik S. Compartmentalized and systemic control of tissue immunity by commensals. Nat Immunol. 2013;14:646–53.

    Article  CAS  PubMed  Google Scholar 

  30. Rutkowski MR, Stephen TL, Svoronos N, Allegrezza MJ, Tesone AJ, Perales-Puchalt A, et al. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell. 2015;27:27–40.

    Article  CAS  PubMed  Google Scholar 

  31. Casanova JL, Abel L, Quintana-Murci L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu Rev Immunol. 2011;29:447–91.

    Article  CAS  PubMed  Google Scholar 

  32. Hawn TR, Verbon A, Lettinga KD, Zhao LP, Li SS, Laws RJ, et al. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med. 2003;198:1563–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oakley OR, Kim KJ, Lin PC, Barakat R, Cacioppo JA, Li Z, et al. Estradiol synthesis in gut-associated lymphoid tissue: leukocyte regulation by a sexually monomorphic system. Endocrinology. 2016;157:4579–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barakat R, Oakley O, Kim H, Jin J, Ko CJ. Extra-gonadal sites of estrogen biosynthesis and function. BMB Rep. 2016;49:488–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tai P, Wang J, Jin H, Song X, Yan J, Kang Y, et al. Induction of regulatory t cells by physiological level estrogen. J Cell Physiol. 2008;214:456–64.

    Article  CAS  PubMed  Google Scholar 

  36. Polanczyk MJ, Carson BD, Subramanian S, Afentoulis M, Vandenbark AA, Ziegler SF, et al. Cutting edge: estrogen drives expansion of the cd4+cd25+ regulatory t cell compartment. J Immunol. 2004;173:2227–30.

    Article  CAS  PubMed  Google Scholar 

  37. Polanczyk MJ, Hopke C, Vandenbark AA, Offner H. Treg suppressive activity involves estrogen dependent expression of programmed death-1 (PD-1). Int Immunol. 2007;19:337–43.

    Article  CAS  PubMed  Google Scholar 

  38. Adurthi S, Kumar MM, Vinodkumar HS, Mukherjee G, Krishnamurthy H, Acharya KK, et al. Oestrogen Receptor-α binds the FOXP3 promoter and modulates regulatory T-cell function in human cervical cancer. Sci Rep. 2017;7:17289–304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Svensson S, Abrahamsson A, Rodriguez GV, Olsson AK, Jensen L, Cao Y, et al. CCL2 and CCL5 are novel therapeutic targets for estrogen-dependent breast cancer. Clin Cancer Res. 2015;21:3794–805.

    Article  CAS  PubMed  Google Scholar 

  40. Svoronos N, Perales-Puchalt A, Allegrezza MJ, Rutkowski MR, Payne KK, Tesone AJ, et al. Tumor cell-independent estrogen signaling drives disease progression through mobilization of myeloid-derived suppressor cells. Cancer Discov. 2017;7:72–85.

    Article  CAS  PubMed  Google Scholar 

  41. Jiang X, Orr BA, Kranz DM, Shapiro DJ. Estrogen induction of the granzyme B inhibitor, proteinase inhibitor 9, protects cells against apoptosis mediated by cytotoxic T lymphocytes and natural killer cells. Endocrinology. 2006;147:1419–26.

    Article  CAS  PubMed  Google Scholar 

  42. Chen KL, Madak-Erdogan Z. Estrogen and microbiota crosstalk: should we pay attention? Trends Endocrinol Metab. 2016;27:752–5.

    Article  CAS  PubMed  Google Scholar 

  43. Grady D, Gebretsadik T, Kerlikowske K, Ernster V, Petitti D. Hormone replacement therapy and endometrial cancer risk: a meta-analysis. Obstet Gynecol. 1995;85:304–13.

    Article  CAS  PubMed  Google Scholar 

  44. Guo RX, Wei LH, Tu Z, Sun PM, Wang JL, Zhao D, et al. 17 beta-estradiol activates PI3K/Akt signaling pathway by estrogen receptor (ER)-dependent and ER-independent mechanisms in endometrial cancer cells. J Steroid Biochem Mol Biol. 2006;99:9–18.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Y, Zhao D, Gong C, Zhang F, He J, Zhang W, et al. Prognostic role of hormone receptors in endometrial cancer: a systematic review and meta-analysis. World J Surg Oncol. 2015;13:208.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lacey JV, Mink PJ, Lubin JH, Sherman ME, Troisi R, Hartge P, et al. Menopausal hormone replacement therapy and risk of ovarian cancer. J Am Med Assoc. 2002;288:334–41.

    Article  CAS  Google Scholar 

  47. Brake T, Lambert PF. Estrogen contributes to the onset, persistence, and malignant progression of cervical cancer in a human papillomavirus-transgenic mouse model. Proc Natl Acad Sci U S A. 2005;102:2490–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gruber CJ, Tschugguel W, Schneeberger C, Huber JC. Production and actions of estrogens. N Engl J Med. 2002;346:340–52.

    Article  CAS  PubMed  Google Scholar 

  49. Zhu BT, Han GZ, Shim JY, Wen Y, Jiang XR. Quantitative structure-activity relationship of various endogenous estrogen metabolites for human estrogen receptor alpha and beta subtypes: insights into the structural determinants favoring a differential subtype binding. Endocrinology. 2006;147:4132–50.

    Article  CAS  PubMed  Google Scholar 

  50. Raftogianis R, Creveling C, Weinshilboum R, Weisz J. Estrogen metabolism by conjugation. J Natl Cancer Inst Monogr. 2000;27:113–24.

    Article  CAS  Google Scholar 

  51. Kwa M, Plottel CS, Blaser JM, Adams S. The intestinal microbiome and estrogen receptor–positive female breast cancer. J Natl Cancer Inst. 2016;108:djw029.

    PubMed Central  Google Scholar 

  52. Ebner T, Remmel RP, Burchell B. Human bilirubin UDP-glucuronosyl- transferase catalyzes the glucuronidation of ethinylestradiol. Mol Pharmacol. 1993;43:649–54.

    CAS  PubMed  Google Scholar 

  53. Bongiovanni AM, Cohn RM. Clinical aspects of steroid conjugation. In: Bernstein S, Solomon S, editors. Chemical and biological aspects of steroid conjugation, chap. 9. New York: Springer; 1970.

    Chapter  Google Scholar 

  54. Sandberg AA, Slaunwhite WR Jr. Studies on phenolic steroids in human subjects. II. The metabolic fate and hepato-biliary-enteric circulation of C14-estrone and C14-estradiol in women. J Clin Invest. 1957;36:1266–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Adlercreutz H, Martin F. Biliary excretion and intestinal metabolism of progesterone and estrogens in man. J Steroid Biochem. 1980;13:231–44.

    Article  CAS  PubMed  Google Scholar 

  56. Adlercreutz H, Jarvenpaa P. Assay of estrogens in human feces. J Steroid Biochem. 1982;17:639–45.

    Article  CAS  PubMed  Google Scholar 

  57. Cole CB, Fuller R, Mallet AK, Rowland IR. The influence of the host on expression of intestinal microbial enzyme activities involved in metabolism of foreign compounds. J Appl Bacteriol. 1985;59:549–53.

    Article  CAS  PubMed  Google Scholar 

  58. Dabek M, McCrae SI, Stevens VJ, Duncan SH, Louis P. Distribution of beta-glucosidase and beta-glucuronidase activity and of beta-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol Ecol. 2008;66:487–95.

    Article  CAS  PubMed  Google Scholar 

  59. Gadelle D, Raibaud P, Sacquet E. beta-Glucuronidase activities of intestinal bacteria determined both in vitro and in vivo in gnotobiotic rats. Appl Environ Microbiol. 1985;49:682–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gloux K, Berteau O, El Oumami H, Beguet F, Leclerc M, Dore J. A metagenomic beta-glucuronidase uncovers a core adaptive function of the human intestinal microbiome. Proc Natl Acad Sci U S A. 2011;108:4539–46.

    Article  CAS  PubMed  Google Scholar 

  61. McBain AJ, Macfarlane GT. Ecological and physiological studies on large intestinal bacteria in relation to production of hydrolytic and reductive enzymes involved in formation of genotoxic metabolites. J Med Microbiol. 1998;47:407–16.

    Article  CAS  PubMed  Google Scholar 

  62. Martin F, Peltonen J, Laatikainen T, Pulkkinen M, Adlercreutz H. Excretion of progesterone metabolites and estriol in faeces from pregnant women during ampicillin administration. J Steroid Biochem. 1975;6:1339–46.

    Article  CAS  PubMed  Google Scholar 

  63. Adlercreutz H, Martin F, Lindström B. Gas chromatographic and mass spectrometric studies on oestrogens in bile—2. Men and non-pregnant women. J Steroid Biochem. 1978;9:1197–205.

    Article  CAS  PubMed  Google Scholar 

  64. Adlercreutz H, Martin F, Järvenpää P, Fotsis T. Steroid absorption and enterohepatic recycling. Contraception. 1979;20:201–23.

    Article  CAS  PubMed  Google Scholar 

  65. Eriksson H, Gustafsson JA, Sjovall J. Steroids in germfree and conventional rats. Free steroids in faeces from conventional rats. Eur J Biochem. 1969;9:286–90.

    Article  CAS  PubMed  Google Scholar 

  66. Shimizu K, Muranaka Y, Fujimura R, Ishida H, Tazume S, Shimamura T. Normalization of reproductive function in germfree mice following bacterial contamination. Exp Anim. 1998;47:151–8.

    Article  CAS  PubMed  Google Scholar 

  67. Falk RT, Brinton LA, Dorgan JF, Fuhrman BJ, Veenstra TD, Xu X, et al. Relationship of serum estrogens and estrogen metabolites to postmenopausal breast cancer risk: a nested case-control study. Breast Cancer Res. 2013;15:R34.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Flores R, Shi J, Fuhrman B, Xu X, Veenstra TD, Gail MH, et al. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J Transl Med. 2012;10:253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sampson JN, Falk RT, Schairer C, Moore SC, Fuhrman BJ, Dallal CM, et al. Association of estrogen metabolism with breast cancer risk in different cohorts of postmenopausal women. Cancer Res. 2017;77:918–25.

    Article  CAS  PubMed  Google Scholar 

  70. Fuhrman BJ, Schairer C, Gail MH, Boyd-Morin J, Xu X, Sue LY, et al. Estrogen metabolism and risk of breast cancer in postmenopausal women. J Natl Cancer Inst. 2012;104:326–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sommer F, Backhed F. The gut microbiota − masters of host development and physiology. Nat Rev Microbiol. 2013;11:227–38.

    Article  CAS  PubMed  Google Scholar 

  72. Radogna F, Diederich M, Ghibelli L. Melatonin: a pleiotropic molecule regulating inflammation. Biochem Pharmacol. 2010;80:1844–52.

    Article  CAS  PubMed  Google Scholar 

  73. Bubenik GA, Brown GM, Grota LJ. Immunohistological localization of melatonin in the rat digestive system. Experientia. 1977;33:662–3.

    Article  CAS  PubMed  Google Scholar 

  74. Talib WH. Melatonin and cancer hallmarks. Molecules. 2018;23:E518.

    Article  PubMed  CAS  Google Scholar 

  75. Viswanathan A, Hankinson SE, Schernhammer ES. Night shift work and the risk of endometrial cancer. Cancer Res. 2007;67:10618–22.

    Article  CAS  PubMed  Google Scholar 

  76. Viswanathan AN, Schernhammer ES. Circulating melatonin and the risk of breast and endometrial cancer in women. Cancer Lett. 2009;281:1–7.

    Article  CAS  PubMed  Google Scholar 

  77. Blask DE, Hill SM. Effects of melatonin on cancer: studies on MCF-7 human breast cancer cells in culture. J Neural Transm. 1986;21:433–49.

    CAS  Google Scholar 

  78. Hill SM, Blask DE. Effects of the pineal hormone melatonin on the proliferation and morphological characteristics of human breast cancer cells (MCF-7) in culture. Cancer Res. 1988;48:6121–6.

    CAS  PubMed  Google Scholar 

  79. Martínez-Campa C, González A, Mediavilla MD, Alonso-González C, Alvarez-García V, Sánchez-Barceló EJ, et al. Melatonin inhibits aromatase promoter expression by regulating cyclooxygenases expression and activity in breast cancer cells. Br J Cancer. 2009;101:1613–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Gonzalez A, Cos S, Martinez-Campa C, Alonso-Gonzalez C, Sanchez-Mateos S, Mediavilla MD, et al. Selective estrogen enzyme modulator actions of melatonin in human breast cancer cells. J Pineal Res. 2008;45:86–92.

    Article  CAS  PubMed  Google Scholar 

  81. Xu D, Lin TH, Yeh CR, Cheng MA, Chen LM, Chang C, et al. The wedelolactone derivative inhibits estrogen receptor-mediated breast, endometrial, and ovarian cancer cells growth. Biomed Res Int. 2014;2014:713263.

    PubMed  PubMed Central  Google Scholar 

  82. Antunes CM, Strolley PD, Rosenshein NB, Davies JL, Tonascia JA, Brown C, et al. Endometrial cancer and estrogen use. Report of a large case-control study. N Engl J Med. 1979;300:9–13.

    Article  CAS  PubMed  Google Scholar 

  83. Moreno V, Bosch FX, Muñoz N, Meijer CJ, Shah KV, Walboomers JM, et al. Effect of oral contraceptives on risk of cervical cancer in women with human papillomavirus infection: the IARC multicentric case-control study. Lancet. 2002;359:1085–92.

    Article  CAS  PubMed  Google Scholar 

  84. Muñoz N, Franceschi S, Bosetti C, Moreno V, Herrero R, Smith JS, et al. Role of parity and human papillomavirus in cervical cancer: the IARC multicentric case-control study. Lancet. 2002;359:1093–101.

    Article  PubMed  Google Scholar 

  85. Arbeit JM, Howley PM, Hanahan D. Chronic estrogen-induced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice. Proc Natl Acad Sci U S A. 1996;93:2930–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Park JS, Rhyu JW, Kim CJ, Kim HS, Lee SY, Kwon YI, et al. Neoplastic change of squamo-columnar junction in uterine cervix and vaginal epithelium by exogenous estrogen in hpv-18 URR E6/E7 transgenic mice. Gynecol Oncol. 2003;89:360–8.

    Article  CAS  PubMed  Google Scholar 

  87. Lukanova A, Kaaks R. Endogenous hormones and ovarian cancer: epidemiology and current hypotheses. Cancer Epidemiol Biomark Prev. 2005;14:98–107.

    CAS  Google Scholar 

  88. Allen NE, Key TJ, Dossus L, Rinaldi S, Cust A, Lukanova A, et al. Endogenous sex hormones and endometrial cancer risk in women in the European Prospective Investigation into Cancer and Nutrition (EPIC). Endocr Relat Cancer. 2008;15:485–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gunter MJ, Hoover DR, Yu H, Wassertheil-Smoller S, Manson JE, Li J, et al. A prospective evaluation of insulin and insulin-like growth factor I as risk factors for endometrial cancer. Cancer Epidemiol Biomark Prev. 2008;17:921–9.

    Article  CAS  Google Scholar 

  90. Charalampakis V, Tahrani AA, Helmy A, Gupta JK, Singhal R. Polycystic ovary syndrome and endometrial hyperplasia: an overview of the role of bariatric surgery in female fertility. Eur J Obstet Gynecol Reprod Biol. 2016;207:220–6.

    Article  PubMed  Google Scholar 

  91. Purdie DM, Green AC. Epidemiology of endometrial cancer. Best Pract Res Clin Obstet Gynaecol. 2001;15:341–54.

    Article  CAS  PubMed  Google Scholar 

  92. Carlson MJ, Thiel KW, Leslie KK. Past, present, and future of hormonal therapy in recurrent endometrial cancer. Int J Womens Health. 2014;6:429–35.

    PubMed  PubMed Central  Google Scholar 

  93. Siiteri PK. Adipose-tissue as a source of hormones. Am J Clin Nutr. 1987;45:277–82.

    Article  CAS  PubMed  Google Scholar 

  94. Upala S, Sanguankeo A. Bariatric surgery and risk of postoperative endometrial cancer: a systematic review and meta-analysis. Surg Obes Relat Dis. 2015;11:949–55.

    Article  PubMed  Google Scholar 

  95. Kaska L, Sledzinski T, Chomiczewska A, Dettlaff-Pokora A, Swierczynski J. Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome. World J Gastroenterol. 2016;22:8698–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gouda J, Prusty RK. Overweight and obesity among women by economic stratum in urban India. J Health Popul Nutr. 2014;32:79–88.

    PubMed  PubMed Central  Google Scholar 

  97. Yajnik CS. Confessions of a thin-fat Indian. Eur J Clin Nutr. 2018;72:469–73.

    Article  PubMed  Google Scholar 

  98. Helzlsouer KJ, Alberg AJ, Gordon GB, Longcope C, Bush TL, Hoffman SC, et al. Serum gonadotropins and steroid hormones and the development of ovarian cancer. JAMA. 1995;274:1926–30.

    Article  CAS  PubMed  Google Scholar 

  99. Lindgren PR, Cajander S, Backstrom T, Gustafsson JA, Makela S, Olofsson JI. Estrogen and progesterone receptors in ovarian epithelial tumors. Mol Cell Endocrinol. 2004;221:97–104.

    Article  CAS  PubMed  Google Scholar 

  100. Lau KM, Mok SC, Ho SM. Expression of human estrogen receptor-a and -b, progesterone receptor, and androgen receptor mRNA in normal and malignant ovarian epithelial cells. Proc Natl Acad Sci U S A. 1999;96:5722–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bardin A, Boulle N, Lazennec G, Vignon F, Pujol P. Loss of ERb expression as a common step in estrogen-dependent tumor progression. Endocr Relat Cancer. 2004;11:537–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lazennec G. Estrogen receptor b, a possible tumor suppressor involved in ovarian carcinogenesis. Cancer Lett. 2006;23:151–7.

    Article  CAS  Google Scholar 

  103. Chu S, Nishi Y, Yanase T, Nawata H, Fuller PJ. Transrepression of estrogen receptor b signaling by nuclear factor-kb in ovarian granulosa cells. Mol Endocrinol. 2004;18:1919–28.

    Article  CAS  PubMed  Google Scholar 

  104. Avilés-Jiménez F, Guoqin Y, Torres-Poveda K, Madrid-Marina V, Torres J. On the search to elucidate the role of microbiota in the genesis of cancer: the cases of gastrointestinal and cervical cancer. Arch Med Res. 2017;48:754–65.

    Article  PubMed  CAS  Google Scholar 

  105. Boskey ER, Cone RA, Whaley KJ, Moench TR. Origins of vaginal acidity: high D/L lactate ratio is consistent with bacteria being the primary source. Hum Reprod. 2001;16:1809–13.

    Article  CAS  PubMed  Google Scholar 

  106. Aroutcheva A, Gariti D, Simon M, Shott S, Faro J, Simoes JA, et al. Defense factors of vaginal lactobacilli. Am J Obstet Gynecol. 2001;185:375–9.

    Article  CAS  PubMed  Google Scholar 

  107. Ocana VS, Pesce De Ruiz Holgado AA, Nader-Macias ME. Characterization of a bacteriocin-like substance produced by a vaginal Lactobacillus salivarius strain. Appl Environ Microbiol. 1999;65:5631–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Reid G, Heinemann C, Velraeds M, van der Mei HC, Busscher HJ. Biosurfactants produced by Lactobacillus. Methods Enzymol. 1999;310:426–33.

    Article  CAS  PubMed  Google Scholar 

  109. Boris S, Barbés C. Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect. 2000;2:543–6.

    Article  CAS  PubMed  Google Scholar 

  110. McMillan A, Dell M, Zellar MP, Cribby S, Martz S, Hong E, et al. Disruption of urogenital biofilms by lactobacilli. Colloids Surf B Biointerfaces. 2011;86:58–64.

    Article  CAS  PubMed  Google Scholar 

  111. Evans JM, Morris LS, Marchesi JR. The gut microbiome: the role of a virtual organ in the endocrinology of the host. J Endocrinol. 2013;218:R37–47.

    Article  CAS  PubMed  Google Scholar 

  112. Freestone PP, Sandrini SM, Haigh RD, Lyte M. Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol. 2008;16:55–64.

    Article  CAS  PubMed  Google Scholar 

  113. Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59:143–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–8.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Ma ZS, Li L. Quantifying the human vaginal community state types (CSTs) with the species specificity index. PeerJ. 2017;5:e3366.

    Article  PubMed  Google Scholar 

  116. Lee JE, Lee S, Lee H, Song YM, Lee K, Han MJ, et al. Association of the vaginal microbiota with human papillomavirus infection in a Korean twin cohort. PLoS One. 2013;8:e63514.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4680–7.

    Article  CAS  PubMed  Google Scholar 

  118. Gao W, Weng J, Gao Y, Chen X. Comparison of the vaginal microbiota diversity of women with and without human papillomavirus infection: a cross-sectional study. BMC Infect Dis. 2013;13:271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Brotman RM, Shardell MD, Gajer P, Fadrosh D, Chang K, Silver MI, et al. Association between the vaginal microbiota, menopause status, and signs of vulvovaginal atrophy. Menopause. 2014;21:450–8.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Pabich WL, Fihn SD, Stamm WE, Scholes D, Boyko EJ, Gupta K. Prevalence and determinants of vaginal flora alterations in postmenopausal women. J Infect Dis. 2003;188:1054–8.

    Article  PubMed  Google Scholar 

  121. Hillier SL, Lau RJ. Vaginal microflora in postmenopausal women who have not received estrogen replacement therapy. Clin Infect Dis. 1997;25:S123.

    Article  PubMed  Google Scholar 

  122. Kenyon C, Colebunders R, Crucitti T. The global epidemiology of bacterial vaginosis: a systematic review. Am J Obstet Gynecol. 2013;209:505–23.

    Article  PubMed  Google Scholar 

  123. Srinivasan S, Hoffman NG, Morgan MT, Matsen FA, Fiedler TL, Hall RW, et al. Bacterial communities in women with bacterial vaginosis: high resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. PLoS One. 2012;7:e37818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ling Z, Kong J, Liu F, Zhu H, Chen X, Wang Y, et al. Molecular analysis of the diversity of vaginal microbiota associated with bacterial vaginosis. BMC Genomics. 2010;11:488.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Cox C, Watt AP, McKenna JP, Coyle PV. Mycoplasma hominis and Gardnerella vaginalis display a significant synergistic relationship in bacterial vaginosis. Eur J Clin Microbiol Infect Dis. 2016;35:481–7.

    Article  CAS  PubMed  Google Scholar 

  126. Atashili J, Poole C, Ndumbe PM, Adimora AA, Smith JS. Bacterial vaginosis and HIV acquisition: a meta-analysis of published studies. AIDS. 2008;22:1493–501.

    Article  PubMed  Google Scholar 

  127. Gallo MF, Macaluso M, Warner L, Fleenor ME, Hook EW, Brill I, et al. Bacterial vaginosis, gonorrhea, and chlamydial infection among women attending a sexually transmitted disease clinic: a longitudinal analysis of possible causal links. Ann Epidemiol. 2012;22:213–20.

    Article  PubMed  Google Scholar 

  128. Aghaizu A, Reid F, Kerry S, Hay PE, Mallinson H, Jensen JS, et al. Frequency and risk factors for incident and redetected Chlamydia trachomatis infection in sexually active, young, multi-ethnic women: a community based cohort study. Sex Transm Infect. 2014;90:524–8.

    Article  PubMed  Google Scholar 

  129. Gillet E, Meys JF, Verstraelen H, Bosire C, De Sutter P, Temmerman M, et al. Bacterial vaginosis is associated with uterine cervical human papillomavirus infection: a meta-analysis. BMC Infect Dis. 2011;11:10.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Nugent RP, Krohn MA, Hillier SL. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J Clin Microbiol. 1991;29:297–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Nasioudis D, Linhares IM, Ledger WJ, Witkin SS. Bacterial vaginosis: a critical analysis of current knowledge. BJOG. 2017;124:61–9.

    Article  CAS  PubMed  Google Scholar 

  132. Castellsague X, Munoz N. Chapter 3: Cofactors in human papillomavirus carcinogenesis—role of parity, oral contraceptives, and tobacco smoking. J Natl Cancer Inst Monogr. 2003;(31):20–8.

    Google Scholar 

  133. Winer RL, Hughes JP, Feng Q, Xi LF, Cherne S, O’Reilly S, et al. Early natural history of incident, type-specific human papillomavirus infections in newly sexually active young women. Cancer Epidemiol Biomark Prev. 2011;20:699–707.

    Article  Google Scholar 

  134. Castellsague X, Bosch FX, Munoz N. Environmental co-factors in HPV carcinogenesis. Virus Res. 2002;89:191–9.

    Article  CAS  PubMed  Google Scholar 

  135. Guidry JT, Scott RS. The interaction between human papillomavirus and other viruses. Virus Res. 2017;231:139–47.

    Article  CAS  PubMed  Google Scholar 

  136. Guo YL, You K, Qiao J, Zhao YM, Geng L. Bacterial vaginosis is conducive to the persistence of HPV infection. Int J STD AIDS. 2012;23:581–4.

    Article  PubMed  Google Scholar 

  137. Behbakht K, Friedman J, Heimler I, Aroutcheva A, Simoes J, Faro S. Role of the vaginal microbiological ecosystem and cytokine profile in the promotion of cervical dysplasia: a case-control study. Infect Dis Obstet Gynecol. 2002;10:181–6.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Grce M, Husnjak K, Matovina M, Milutin N, Magdic L, Husnjak O, et al. Human papillomavirus, cytomegalovirus, and adeno-associated virus infections in pregnant and nonpregnant women with cervical intraepithelial neoplasia. J Clin Microbiol. 2004;42:1341–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Audirac-Chalifour A, Torres-Poveda K, Bahena-Román M, Téllez-Sosa J, Martínez-Barnetche J, Cortina-Ceballos B, et al. Cervical microbiome and cytokine profile at various stages of cervical cancer: a pilot study. PLoS One. 2016;11:e0153274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Di Pietro M, Filardo S, Porpora MG, Recine N, Latino MA, Sessa R. HPV/Chlamydia trachomatis co-infection: metagenomic analysis of cervical microbiota in asymptomatic women. New Microbiol. 2018;41:34–41.

    CAS  PubMed  Google Scholar 

  141. Oh HY, Kim BS, Seo SS, Kong JS, Lee JK, Park SY, et al. The association of uterine cervical microbiota with an increased risk for cervical intraepithelial neoplasia in Korea. Clin Microbiol Infect. 2015;21:674.e1–9.

    Article  CAS  Google Scholar 

  142. Brotman RM, Shardell MD, Gajer P, Tracy JK, Zenilman JM, Ravel J, et al. Interplay between the temporal dynamics of the vaginal microbiota and human papillomavirus detection. J Infect Dis. 2014;210:1723–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Seo SS, Oh HY, Lee JK, Kong JS, Lee DO, Kim MK. Combined effect of diet and cervical microbiome on the risk of cervical intraepithelial neoplasia. Clin Nutr. 2016;35:1434–41.

    Article  PubMed  Google Scholar 

  144. Lewis FM, Bernstein KT, Aral SO. Vaginal microbiome and its relationship to behavior, sexual health, and sexually transmitted diseases. Obstet Gynecol. 2017;129:643–54.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Brooks JP, Buck GA, Chen G, Diao L, Edwards DJ, Fettweis JM, et al. Changes in vaginal community state types reflect major shifts in the microbiome. Microb Ecol Health Dis. 2017;28:1303265.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Mitra A, MacIntyre DA, Lee YS, Smith A, Marchesi JR, Lehne B, et al. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. Sci Rep. 2015;5:16865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Smith SB, Ravel J. The vaginal microbiota, host defence and reproductive physiology. J Physiol. 2017;595:451–63.

    Article  CAS  PubMed  Google Scholar 

  148. Chase D, Goulder A, Zenhausern F, Monk B, Herbst-Kralovetz M. The vaginal and gastrointestinal microbiomes in gynecologic cancers: a review of applications in etiology, symptoms and treatment. Gynecol Oncol. 2015;138:190–200.

    Article  PubMed  Google Scholar 

  149. Zhang C, Liu Y, Gao W, Pan Y, Gao Y, Shen J, et al. The direct and indirect association of cervical microbiota with the risk of cervical intraepithelial neoplasia. Cancer Med. 2018;7:2172. https://doi.org/10.1002/cam4.1471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fernández-Benítez C, Mejuto-López P, Otero-Guerra L, Margolles-Martins MJ, Suárez-Leiva P, Vazquez F, Chlamydial Primary Care Group. Prevalence of genital Chlamydia trachomatis infection among young men and women in Spain. BMC Infect Dis. 2013;13:388.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Lewis D, Newton DC, Guy RJ, Ali H, Chen MY, Fairley CK, et al. The prevalence of Chlamydia trachomatis infection in Australia: a systematic review and meta-analysis. BMC Infect Dis. 2012;12:113.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Castellsague X, Pawlita M, Roura E, Margall N, Waterboer T, Bosch FX, et al. Prospective seroepidemiologic study on the role of human papillomavirus and other infections in cervical carcinogenesis: evidence from the EPIC cohort. Int J Cancer. 2014;135:440–52.

    Article  CAS  PubMed  Google Scholar 

  153. Arnheim Dahlstrom L, Andersson K, Luostarinen T, Thoresen S, Ögmundsdottír H, Tryggvadottír L, et al. Prospective seroepidemiologic study of human papillomavirus and other risk factors in cervical cancer. Cancer Epidemiol Biomark Prev. 2011;20:2541–50.

    Article  Google Scholar 

  154. Bebear C, de Barbeyrac B. Genital Chlamydia trachomatis infections. Clin Microbiol Infect. 2009;15:4–10.

    Article  CAS  PubMed  Google Scholar 

  155. Ohman H, Tiitinen A, Halttunen M, Lehtinen M, Paavonen J, Surcel HM, et al. Cytokine polymorphisms and severity of tubal damage in women with Chlamydia-associated infertility. J Infect Dis. 2009;199:1353–9.

    Article  CAS  PubMed  Google Scholar 

  156. Muñoz N, Kato I, Bosch FX, Eluf-Neto J, De Sanjosé S, Ascunce N, et al. Risk factors for HPV DNA detection in middle-aged women. Sex Transm Dis. 1996;23:504–10.

    Article  PubMed  Google Scholar 

  157. Seraceni S, De Seta F, Colli C, Del Savio R, Pesel G, Zanin V, et al. High prevalence of HPV multiple genotypes in women with persistent chlamydia trachomatis infection. Infect Agent Cancer. 2014;9:30.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Silva J, Cerqueira F, Ribeiro J, Sousa H, Osório T, Medeiros R. Is Chlamydia trachomatis related to human papillomavirus infection in young women of southern European population? A self-sampling study. Arch Gynecol Obstet. 2013;288:627–33.

    Article  PubMed  Google Scholar 

  159. Castle PE, Escoffery C, Schachter J, Rattray C, Schiffman M, Moncada J, et al. Chlamydia trachomatis, herpes simplex virus 2, and human T-cell lymphotrophic virus type 1 are not associated with grade of cervical neoplasia in Jamaican colposcopy patients. Sex Transm Dis. 2003;30:575–80.

    Article  PubMed  Google Scholar 

  160. Samoff E, Koumans EH, Markowitz LE, Sternberg M, Sawyer MK, Swan D, et al. Association of Chlamydia trachomatis with persistence of high-risk types of human papillomavirus in a cohort of female adolescents. Am J Epidemiol. 2005;162:668–75.

    Article  PubMed  Google Scholar 

  161. Vriend HJ, Bogaards JA, van Bergen JEAM, Brink AATP, van den Broek IVF, Hoebe CJPA, et al. Incidence and persistence of carcinogenic genital human papillomavirus infections in young women with or without Chlamydia trachomatis co-infection. Cancer Med. 2015;4:1589–98.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Karim S, Souho T, Benlemlih M, Bennani B. Cervical cancer induction enhancement potential of Chlamydia trachomatis: a systematic review. Curr Microbiol. 2018;75:1667. https://doi.org/10.1007/s00284-018-1439-7.

    Article  CAS  PubMed  Google Scholar 

  163. Koskela P, Anttila T, Bjørge T, Brunsvig A, Dillner J, Hakama M, et al. Chlamydia trachomatis infection as a risk factor for invasive cervical cancer. Int J Cancer. 2000;85:35–9.

    Article  CAS  PubMed  Google Scholar 

  164. Smith JS, Bosetti C, Muñoz N, Herrero R, Bosch FX, Eluf-Neto J. Chlamydia trachomatis and invasive cervical cancer: a pooled analysis of the IARC multicentric case-control study. Int J Cancer. 2004;111:431–9.

    Article  CAS  PubMed  Google Scholar 

  165. Zhu H, Shen Z, Luo H, Zhang W, Zhu X. Chlamydia trachomatis infection-associated risk of cervical cancer: a meta-analysis. Medicine (Baltimore). 2016;95:e3077.

    Article  Google Scholar 

  166. Massad LS, Xie X, Burk R, Keller MJ, Minkoff H, DʼSouza G, et al. Long-term cumulative detection of human papillomavirus among HIV seropositive women. AIDS. 2014;28:2601–8.

    Article  PubMed  Google Scholar 

  167. Rowhani-Rahbar A, Hawes SE, Sow PS, Toure P, Feng Q, Dem A, et al. The impact of HIV status and type on the clearance of human papillomavirus infection among Senegalese women. J Infect Dis. 2007;196:887–94.

    Article  PubMed  Google Scholar 

  168. Massad LS, Xie X, D’Souza G, Darragh TM, Minkoff H, Wright R, et al. Incidence of cervical precancers among HIV seropositive women. Am J Obstet Gynecol. 2015;212:606.e1–8.

    Article  Google Scholar 

  169. Clifford GM, Franceschi S, Keiser O, Schöni-Affolter F, Lise M, Dehler S, et al. Immunodeficiency and the risk of cervical intraepithelial neoplasia 2/3 and cervical cancer: a nested case-control study in the Swiss HIV cohort study. Int J Cancer. 2016;138:1732–40.

    Article  CAS  PubMed  Google Scholar 

  170. Abraham AG, Strickler HD, D’Souza G. Invasive cervical cancer risk among HIV infected women is a function of CD4 count and screening. J Acquir Immune Defic Syndr. 2013;63:e163.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet. 2007;370:59–67.

    Article  PubMed  Google Scholar 

  172. Reusser NM, Downing C, Guidry J, Tyring SK. HPV carcinomas in immunocompromised patients. J Clin Med. 2015;4:260–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Nazli A, Chan O, Dobson-Belaire WN, Ouellet M, Tremblay MJ, Gray-Owen SD, et al. Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog. 2010;6:e1000852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Tugizov SM, Herrera R, Chin-Hong P, Veluppillai P, Greenspan D, Michael Berry J, et al. HIV-associated disruption of mucosal epithelium facilitates paracellular penetration by human papillomavirus. Virology. 2013;446:378–88.

    Article  CAS  PubMed  Google Scholar 

  175. Palefsky J. Human papillomavirus-related disease in people with HIV. Curr Opin HIV AIDS. 2009;4:52–6.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Blitz S, Baxter J, Raboud J, Walmsley S, Rachlis A, Smaill F, et al. Evaluation of HIV and highly active antiretroviral therapy on the natural history of human papillomavirus infection and cervical cytopathologic findings in HIV-positive and high-risk HIV-negative women. J Infect Dis. 2013;208:454–62.

    Article  CAS  PubMed  Google Scholar 

  177. Konopnicki D, Manigart Y, Gilles C, Barlow P, de Marchin J, Feoli F, et al. Sustained viral suppression and higher CD4+ T-cell count reduces the risk of persistent cervical high-risk human papillomavirus infection in HIV-positive women. J Infect Dis. 2013;207:1723–9.

    Article  CAS  PubMed  Google Scholar 

  178. Frisch M, Biggar RJ, Goedert JJ. Human papillomavirus-associated cancers in patients with human immunodeficiency virus infection and acquired immunodeficiency syndrome. J Natl Cancer Inst. 2000;92:1500–10.

    Article  CAS  PubMed  Google Scholar 

  179. Houlihan CF, Larke NL, Watson-Jones D, Smith-McCune KK, Shiboski S, Gravitt PE, et al. Human papillomavirus infection and increased risk of HIV acquisition. A systematic review and meta-analysis. AIDS. 2012;26:2211–22.

    Article  PubMed  Google Scholar 

  180. Averbach SH, Gravitt PE, Nowak RG, Celentano DD, Dunbar MS, Morrison CS, et al. The association between cervical human papillomavirus infection and HIV acquisition among women in Zimbabwe. AIDS. 2010;24:1035–42.

    Article  PubMed  Google Scholar 

  181. Smith-McCune KK, Shiboski S, Chirenje MZ, Magure T, Tuveson J, Ma Y, et al. Type-specific cervico-vaginal human papillomavirus infection increases risk of HIV acquisition independent of other sexually transmitted infections. PLoS One. 2010;5:e10094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Liu M, Kalbasi A, Beatty GL. Functio laesa: cancer inflammation and therapeutic resistance. J Oncol Pract. 2017;13:173–80.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Yang TK, Chung CJ, Chung SD, Muo CH, Chang CH, Huang CY. Risk of endometrial cancer in women with pelvic inflammatory disease: a nationwide population-based retrospective cohort study. Medicine (Baltimore). 2015;94:e1278.

    Article  Google Scholar 

  184. Ness RB, Kip KE, Hillier SL, Soper DE, Stamm CA, Sweet RL, et al. A cluster analysis of bacterial vaginosis–associated microflora and pelvic inflammatory disease. Am J Epidemiol. 2005;162:585–90.

    Article  PubMed  Google Scholar 

  185. Sharma H, Tal R, Clark NA, Segars JH. Microbiota and pelvic inflammatory disease. Semin Reprod Med. 2014;32:43–9.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Mitchell CM, Haick A, Nkwopara E, Garcia R, Rendi M, Agnew K, et al. Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women. Am J Obstet Gynecol. 2015;212:611.e1–9.

    Article  Google Scholar 

  187. Walther-Antonio MR, Chen J, Multinu F, Hokenstad A, Distad TJ, Cheek EH, et al. Potential contribution of the uterine microbiome in the development of endometrial cancer. Genome Med. 2016;8:122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Brewster WR, Ko EM, Keku TO. An evaluation of the microbiota of the upper genital tract of women with benign changes and epithelial ovarian cancer. J Clin Oncol. 2016;34(15_suppl):5568.

    Article  Google Scholar 

  189. Poole EM, Lee IM, Ridker PM, Buring JE, Hankinson SE, Tworoger SS. A prospective study of circulating C-reactive protein, interleukin-6, and tumor necrosis factor alpha receptor 2 levels and risk of ovarian cancer. Am J Epidemiol. 2013;178:1256–64.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Krohn MA, Hillier SL, Nugent RP, Cotch MF, Carey JC, Gibbs RS, et al. The genital flora of women with intraamniotic infection. Vaginal Infection and Prematurity Study Group. J Infect Dis. 1995;171:1475–80.

    Article  CAS  PubMed  Google Scholar 

  191. Silver HM, Sperling RS, St Clair PJ, Gibbs RS. Evidence relating bacterial vaginosis to intraamniotic infection. Am J Obstet Gynecol. 1989;161:808–12.

    Article  CAS  PubMed  Google Scholar 

  192. Hillier SL, Krohn MA, Cassen E, Easterling TR, Rabe LK, Eschenbach DA. The role of bacterial vaginosis and vaginal bacteria in amniotic fluid infection in women in preterm labor with intact fetal membranes. Clin Infect Dis. 1995;20:S276–8.

    Article  PubMed  Google Scholar 

  193. Hillier SL, Kiviat NB, Hawes SE, Hasselquist MB, Hanssen PW, Eschenbach DA, et al. Role of bacterial vaginosis-associated microorganisms in endometritis. Am J Obstet Gynecol. 1996;175:435–41.

    Article  CAS  PubMed  Google Scholar 

  194. Tone AA, Salvador S, Finlayson SJ, Tinker AV, Kwon JS, Lee CH, et al. The role of the fallopian tube in ovarian cancer. Clin Adv Hematol Oncol. 2012;10:296–306.

    PubMed  Google Scholar 

  195. Massad LS, Ahdieh L, Benning L, Minkoff H, Greenblatt RM, Watts H, et al. Evolution of cervical abnormalities among women with HIV-1: evidence from surveillance cytology in the women’s interagency HIV study. J Acquir Immune Defic Syndr. 2001;27:432–42.

    Article  CAS  PubMed  Google Scholar 

  196. Silva J, Cerqueira F, Medeiros R. Chlamydia trachomatis infection: implications for HPV status and cervical cancer. Arch Gynecol Obstet. 2014;289:715–23.

    Article  PubMed  Google Scholar 

  197. Gaya P, Medina M, Sánchez-Jiménez A, Landete JM. Phytoestrogen metabolism by adult human gut microbiota. Molecules. 2016;21:E1034.

    Article  PubMed  CAS  Google Scholar 

  198. Rietjens IMCM, Louisse J, Beekmann K. The potential health effects of dietary phytoestrogens. Br J Pharmacol. 2017;174:1263–80.

    Article  CAS  PubMed  Google Scholar 

  199. Landete JM, Arqués JL, Medina M, Gaya P, de las Rivas B, Muñoz R. Bioactivation of phytoestrogens: intestinal bacteria and health. Crit Rev Food Sci Nutr. 2016;56:1826–43.

    Article  CAS  PubMed  Google Scholar 

  200. Selma MV, Beltrán D, Luna MC, Romo-Vaquero M, García-Villalba R, Mira A, et al. Isolation of human intestinal bacteria capable of producing the bioactive metabolite isourolithin A from ellagic acid. Front Microbiol. 2017;8:1521.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Velicer CM, Heckbert SR, Lampe JW, Potter JD, Robertson CA, Taplin SH. Antibiotic use in relation to the risk of breast cancer. JAMA. 2004;291:827–35.

    Article  CAS  PubMed  Google Scholar 

  202. Javurek AB, Spollen WG, Johnson SA, Bivens NJ, Bromert KH, Givan SA, et al. Effects of exposure to bisphenol A and ethinyl estradiol on the gut microbiota of parents and their offspring in a rodent model. Gut Microbes. 2016;7:471–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Clavel T, Mapesa JO. Phenolics in human nutrition: importance of the intestinal microbiome for isoflavone and lignan bioavailability. In: Ramawat K, Mérillon JM, editors. Natural products. Berlin: Springer; 2013.

    Google Scholar 

Download references

Acknowledgments

We wish to acknowledge the help of Mr. G. R. Chandran, Project Management Consultant in making the figures; Prof. Rita Christopher, Department of Neurochemistry, National Institute of Mental Health and Neurosciences; and Dr. Sandhya Ravi, Consultant Surgeon and Managing Director, Prameya Health Pvt. Ltd., Bangalore, for reviewing the chapter and for offering useful suggestions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jayshree, R.S., Kumar, R.V. (2019). Contribution of the Gut and Vaginal Microbiomes to Gynecological Cancers. In: Mehta, S., Singla, A. (eds) Preventive Oncology for the Gynecologist. Springer, Singapore. https://doi.org/10.1007/978-981-13-3438-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3438-2_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3437-5

  • Online ISBN: 978-981-13-3438-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics