Skip to main content

Phycoremediation: An Integrated and Eco-friendly Approach for Wastewater Treatment and Value-Added Product Potential

  • Chapter
  • First Online:
Book cover Bioremediation of Industrial Waste for Environmental Safety

Abstract

This book chapter presents a review on the application and challenges of microalgae (phycoremediation) for wastewater treatment. Primarily, the general brief is an investigative focus that compares current technologies in wastewater research around the globe and emphasizes the positive aspects of the phycoremediation approach. Much scientific literature has reported the feasibility and innovative merits of phycoremediation, particularly on the assimilation and accumulation of nutrients from wastewater. We discuss the potential of the technology, based on existing reports such as the advantages and disadvantages of phycoremediation. Subsequently, the biomass application from certain quantities of wastewater will have a benefit in the form of commercial applications. The chapter ends with a discussion of trends and future directions based on the detailed literature review with a focus on ensuring safer and sustainable implementation of phycoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AbeIiovich A (1983) The effects of unbalanced ammonia and BOD concentrations on oxidation ponds. Water Res 17(3):299–301

    Article  Google Scholar 

  • Abeliovich A, Azov Y (1976) Toxicity of ammonia to algae in sewage oxidation ponds. Appl Environ Microbiol 31(6):801–806

    CAS  Google Scholar 

  • Abinandan S, Shanthakumar S (2015) Challenges and opportunities in application of microalgae (Chlorophyta) for wastewater treatment: a review. Renew Sust Energ Rev 52:123–132

    Article  CAS  Google Scholar 

  • Abinandan S, Shanthakumar S (2016) Evaluation of photosynthetic efficacy and CO2 removal of microalgae grown in an enriched bicarbonate medium. 3 Biotech 6(1):9

    Article  CAS  Google Scholar 

  • Acién FG, Gómez-Serrano C, Morales-Amaral MM et al (2016) Appl Microbiol Biotechnol 100:9013

    Article  CAS  Google Scholar 

  • Ahmed MB, Zhou JL, Ngo HH, Guo W, Thomaidis NS, Xu J (2017) Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. J Hazard Mater 323:274–298

    Article  CAS  Google Scholar 

  • Ajayan KV, Selvaraju M, Unnikannan P, Sruthi P (2015) Phycoremediation of tannery wastewater using microalgae scenedesmus species. Int J Phytoremediation 17(10):907–916

    Article  CAS  Google Scholar 

  • Aksu Z (2001) Equilibrium and kinetic modelling of cadmium(II) biosorption by C. vulgaris in a batch system: effect of temperature. Sep Purif Technol 21

    Article  CAS  Google Scholar 

  • Al-Shannag M, Bani-Melhem K, Al-Anber Z, AlQodah Z (2013) Enhancement of COD-nutrients removals and filterability of secondary clarifier municipal wastewater influent using electro coagulation technique. Sep Sci Technol 48(4):673–680

    Article  CAS  Google Scholar 

  • Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28(1):64–70

    Article  Google Scholar 

  • Bharagava RN, Chowdhary P, Saxena G (2017a) Bioremediation: an eco-sustainable green technology: its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis, Boca raton, pp 1–22. https://doi.org/10.1201/9781315173351-2

    Chapter  Google Scholar 

  • Bharagava RN, Saxena G, Chowdhary P (2017b) Constructed wetlands: an emerging phytotechnology for degradation and detoxification of industrial wastewaters. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis, Boca Raton, pp 397–426. https://doi.org/10.1201/9781315173351-15

    Chapter  Google Scholar 

  • Bharagava RN, Saxena G, Mulla SI, Patel DK (2017c) Characterization and identification of recalcitrant organic pollutants (ROPs) in tannery wastewater and its phytotoxicity evaluation for environmental safety. Arch Environ Contam Toxicol. https://doi.org/10.1007/s00244-017-0490-x

    Article  CAS  Google Scholar 

  • Bishnoi NR, Pant A, Garima (2004) Biosorption of copper from aqueous solution using algal biomass. J Sci Ind Res 63(10):813–816

    CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577

    Article  CAS  Google Scholar 

  • Bulgariu L, Lupea M, Ciubota-rosie C, Macoveanu M (2010) Possibility of using algae biomass for removing pb (II) ions from aqueous solutions. Sci Pap Agron Ser 53(1):79–83

    Google Scholar 

  • Caceres TP, Megharaj M, Naidu R (2008) Biodegradation of the pesticide fenamiphos by ten different species of green algae and cyanobacteria. Curr Microbiol 57(6):643–646

    Article  CAS  Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369

    Article  CAS  Google Scholar 

  • Cardoso NF, Lima EC, Royer B, Bach MV, Dotto GL, Pinto LA, Calvete T (2012) Comparison of spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of reactive red 120 dye from aqueous effluents. J Hazard Mater 241–242:146–153

    Article  CAS  Google Scholar 

  • Chandra R, Saxena G, Kumar V (2015) Phytoremediation of environmental pollutants: an eco-sustainable green technology to environmental management. In: Chandra R (ed) Advances in biodegradation and bioremediation of industrial waste, 1st edn. CRC Press/Taylor & Francis, Boca Raton, pp 1–30. https://doi.org/10.1201/b18218-2

    Chapter  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101(9):3097–3105

    Article  CAS  Google Scholar 

  • Choi HJ, Lee SM (2015) Effect of the N/P ratio on biomass productivity and nutrient removal from municipal wastewater. Bioprocess Eng 38(4):761–766

    CAS  Google Scholar 

  • Cui Y, Rashid N, Hu N, Rehman MSU, Han JI (2014) Electricity generation and microalgae cultivation in microbial fuel cell using microalgae-enriched anode and bio-cathode. Energy Convers Manag 79:674–680

    Article  CAS  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37(18):4311–4330

    Article  CAS  Google Scholar 

  • de Raposo MFJ, Oliveira SE, Castro PM, Bandarra NM, Morais RM (2010) On the utilization of microalgae for brewery effluent treatment and possible applications of the produced biomass. J Inst Brew 116(3):285–292

    Article  CAS  Google Scholar 

  • Dunn KM (1997) The biotechnology of high rate algal ponding systems in the treatment of saline tannery wastewaters. PhD thesis. Rhodes University, Grahams town, South Africa. https://core.ac.uk/download/pdf/11984446.pdf

  • Efroymson RA, Dale VH, Langholtz MH (2016) Socioeconomic indicators for sustainable design and commercial development of algal biofuel systems. GCB Bioenergy

    Google Scholar 

  • Farooq W, Lee YC, Ryu BG, Kim BH, Kim HS, Choi YE, Yang JW (2013) Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour Technol 132:230–238

    Article  CAS  Google Scholar 

  • Gautam S, Kaithwas G, Bharagava RN, Saxena G (2017) Pollutants in tannery wastewater, pharmacological effects and bioremediation approaches for human health protection and environmental safety. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis, Boca Raton, pp 369–396. https://doi.org/10.1201/9781315173351-14

    Chapter  Google Scholar 

  • Geider R, La Roche J (2002) Redfield revisited: variability of C: N: P in marine microalgae and its biochemical basis. Eur J Phycol 37(1):1–17

    Article  Google Scholar 

  • Girard J, Roy M, Ben M, Gagnon J, Faucheux N, Heitz M, Tremblay R, Deschenes J (2014) Mixotrophic cultivation of green microalgae Scenedesmus obliquus on cheese whey permeate for biodiesel production. Algal Res 5:241–248

    Article  Google Scholar 

  • Goutam SP, Saxena G, Singh V, Yadav AK, Bharagava RN (2018) Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J 336:386–396. https://doi.org/10.1016/j.cej.2017.12.029

    Article  CAS  Google Scholar 

  • Gouveia L, Neves C, Sebastião D, Nobre BP, Matos CT (2014) Effect of light on the production of bioelectricity and added-value microalgae biomass in a photosynthetic alga microbial fuel cell. Bioresour Technol 154:171–177

    Article  CAS  Google Scholar 

  • Grima EM, Belarbi EH, Fernández FA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7):491–515

    Article  Google Scholar 

  • Hodaifa G, Martínez ME, Sánchez S (2008) Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. Bioresour Technol 99(5):1111–1117

    Article  CAS  Google Scholar 

  • Hongyang S, Yalei Z, Chunmin Z, Xuefei Z, Jinpeng L (2011) Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresour Technol 102(21):9884–9890

    Article  CAS  Google Scholar 

  • Kalavathi DF, Uma L, Subramanian G (2011) Degradation and metabolization of the pigment—melanoidin in distillery effluent by the marine cyanobacterium Oscillatoria boryana BDU 92181. Enzym Microb Technol 29(4–5):246–251

    Google Scholar 

  • Keraita B, Drechsel P, Mateo-Sagasta J Medlicott K (2015). Health risks and cost-effective health risk management in wastewater use systems. In: Wastewater. Springer Dordrecht, pp 39–54

    Google Scholar 

  • Kothari R, Pathak VV, Kumar V, Singh DP (2012) Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water: an integrated approach for treatment and biofuel production. Bioresour Technol 116:466–470

    Article  CAS  Google Scholar 

  • Kothari R, Prasad R, Kumar V, Singh DP (2013) Production of biodiesel from microalgae Chlamydomonaspolypyrenoideum grown on dairy industry wastewater. Bioresour Technol 144:499–503

    Article  CAS  Google Scholar 

  • Kotteswari M, Murugesan S, Ranjith Kumar R (2012) Phycoremediation of dairy effluent by using the microalgae Nostocsp. Int J Environ Res Dev 2(1):35–43

    Google Scholar 

  • Kuo C-M, Chen T.-Y, Lin T-, Kao C-Y, Lai J-T, Chang J-S, Lin C-S (2015) Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production. Bioresour Technol 194(75):326-333

    Article  CAS  Google Scholar 

  • Lakaniemi AM, Tuovinen OH, Puhakka JA (2012) Production of electricity and butanol from microalgal biomass in microbial fuel cells. Bioenergy Res 5(2):481–491

    Article  CAS  Google Scholar 

  • Lekshmi B, Joseph RS, Jose A, Abinandan S, Shanthakumar S (2015) Studies on reduction of inorganic pollutants from wastewater by Chlorella pyrenoidosa and Scenedesmusabundans. Alex Eng J 54(4):1291–1296

    Article  Google Scholar 

  • Li Y, Chen YF, Chen P, Min M, Zhou W, Martinez B, Zhu J, Ruan R (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102(8):5138–5144

    Article  CAS  Google Scholar 

  • Lu N, Zhou SG, Zhuang L, Zhang JT, Ni JR (2009) Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem Eng J 43:246–251

    Article  CAS  Google Scholar 

  • Manninen K, Huttunen S, Seppälä J, Laitinen J, Spilling K (2016) Resource recycling with algal cultivation: environmental and social perspectives. J Clean Prod 134:495–505

    Article  Google Scholar 

  • Mata TM, Melo AC, SimoËœes M, Caetano NS (2012) Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus. Bioresour Technol 107:151–158

    Article  CAS  Google Scholar 

  • Mateo-Sagasta J, Raschid-Sally L Thebo A (2015) Global wastewater and sludge production, treatment and use. In: Wastewater. Springer, Dordrecht, pp 15–38

    Google Scholar 

  • McGinn PJ, Dickinson KE, Park KC, Whitney CG, Mac Quarrie SP, Black FJ et al (2012) Assessment of the bioenergy and bioremediation potentials of the microalga Scenedesmus sp. AMDD cultivated in municipal wastewater effluent in batch and continuous mode. Algal Res 1:155–165

    Article  Google Scholar 

  • Mitra D, van Leeuwen Hans J, Lamsal B (2012) Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Res 1(1):40–48

    Article  CAS  Google Scholar 

  • National Research Council (2012) Water reuse: potential for expanding the nation’s water supply through reuse of municipal wastewater. The National Academies Press, Washington, DC. https://doi.org/10.17226/13303

    Book  Google Scholar 

  • Olguín EJ (2012) Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a Biorefinery. Biotechnol Adv 30:1031–1046

    Article  CAS  Google Scholar 

  • Onyancha D, Mavura W, Ngila JC, Ongoma P, Chacha J (2008) Studies of chromium removal from tannery wastewaters by algae biosorbents, Spirogyra condensata and Rhizoclonium hieroglyphicum. J Hazard Mater 158(2–3):605–614

    Article  CAS  Google Scholar 

  • Oswald WJ, Gotaas HB, Golueke CG, Kellen WR (1957) Algae in waste treatment Sewage Ind. Wastes 29:437–455

    Google Scholar 

  • Özer A, Akkaya G, Turabik M (2006) Biosorption of Acid Blue 290 (AB 290) and Acid Blue 324 (AB 324) dyes on Spirogyra rhizopus. J Hazard Mater 135(1–3):355–364

    Article  CAS  Google Scholar 

  • Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101(6):1533–1543

    Article  CAS  Google Scholar 

  • Pathak VV, Singh DP, Kothari R, Chopra AK (2014) Phycoremediation of textile wastewater by unicellular microalga Chlorella pyrenoidosa. Cell Mol Biol 60(5):35–40

    Google Scholar 

  • Perez M, Nolasco NA, Vasavada A, Johnson M, Kuehnle A (2015) Algae-mediated valorization of industrial waste streams. Ind Biotechnol 11(4):229–234

    Article  CAS  Google Scholar 

  • Perez-Garcia O, Escalante FM, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45(1):11–36

    Article  CAS  Google Scholar 

  • Pinto G, Pollio A, Previtera L, Stanzione M, Temussi F (2003) Removal of low molecular weight phenols from olive oil mill wastewater using microalgae. Biotechnol Lett 25:1657–1659

    Article  CAS  Google Scholar 

  • Posadas E, Bochon S, Coca M, Garcıa-Gonzalez MC, GarcıaEncina PA, Munoz R (2014) Microalgae-based agro-industrial wastewater treatment: a preliminary screening of biodegradability. J Appl Phycol 26(6):2335–2345

    Article  CAS  Google Scholar 

  • Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae – a review. J Algal Biomass Util 3(4):89–100

    Google Scholar 

  • Ramos-Cormenzana A, Monteoliva-Sanchez M, Lopez MJ (1995) Bioremediation of alpechin. Int Biodeter Biodegr 35(1–3):249–268

    Article  CAS  Google Scholar 

  • Rashid N, Cui YF, Muhammad SUR, Han JI (2013) Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell. Sci Total Environ 456–457:91–94

    Article  CAS  Google Scholar 

  • Ravindran B, Gupta S, Cho WM, Kim J, Lee S, Jeong KH, Choi HC (2016) Microalgae potential and multiple roles – current progress and future prospects – an overview. Sustainability 8(12):1215

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile ffluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  Google Scholar 

  • Sankaran K, Premalatha M, Vijayasekaran M, Somasundaram VT (2014) DEPHY project: distillery wastewater treatment through anaerobic digestion and phycoremediation – a green industrial approach. Renew Sust Energ Rev 37:634–643

    Article  CAS  Google Scholar 

  • Saxena G, Bharagava RN (2015) Persistent organic pollutants and bacterial communities present during the treatment of tannery wastewater. In: Chandra R (ed) Environmental waste management, 1st edn. CRC Press/Taylor & Francis, Boca Raton, pp 217–247. https://doi.org/10.1201/b19243-10

    Chapter  Google Scholar 

  • Saxena G, Bharagava RN (2017) Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis, Boca Raton, pp 23–56. https://doi.org/10.1201/9781315173351-3

    Chapter  Google Scholar 

  • Saxena G, Chandra R, Bharagava RN (2016) Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Rev Environ Contam Toxicol 240:31–69. https://doi.org/10.1007/398_2015_5009

    Article  CAS  Google Scholar 

  • Saxena G, Purchase D, Mulla SI, Saratale GD, Bharagava RN (2019) Phytoremediation of heavy metal-contaminated sites: Eco-environmental concerns, field studies, sustainability issues and future prospects. Rev Environ Contam Toxicol. https://doi.org/10.1007/398_2019_24

    Google Scholar 

  • Sheoran AS, Bhandari S (2005) Treatment of mine water by a microbial mat: bench-scale experiments. Mine Water Environ 24:38–42

    Article  CAS  Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14(9):2596–2610

    Article  CAS  Google Scholar 

  • Singh SK, Bansal A, Jha MK, Dey A (2012) An integrated approach to remove Cr(VI) using immobilized Chlorella minutissima grown in nutrient rich sewage wastewater. Bioresour Technol 104:257–265

    Article  CAS  Google Scholar 

  • Solovchenko A, Pogosyan S, Chivkunova O, Selyakh I, Semenova L, Voronova E, Scherbakov P, Konyukhov I, Chekanov K, Kirpichnikov M, Lobakova E (2014) Phycoremediation of alcohol distillery wastewater with a novel Chlorella sorokiniana strain cultivated in a photobioreactor monitored on-line via chlorophyll fluorescence. Algal Res 6:234–241

    Article  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  CAS  Google Scholar 

  • Strik DP, Terlouw H, Hamelers HV, Buisman CJ (2008) Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC). Appl Microbiol Biotechnol 81(4):659–668

    Article  CAS  Google Scholar 

  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2011) Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv 29(6):896–907

    Article  CAS  Google Scholar 

  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2013) Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ Int 51:59–72

    Article  CAS  Google Scholar 

  • Tarlan E, Dilek FB, Yetis U (2002) Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater. Bioresour Technol 84:1–5

    Article  CAS  Google Scholar 

  • Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. Journal of Renewable and Sustainable Energy 2(1):012701

    Article  CAS  Google Scholar 

  • Velasquez-Orta SB, Curtis TP, Logan BE (2009) Energy from algae using microbial fuel cells. Biotechnol Bioeng 103(6):1068–1076

    Article  CAS  Google Scholar 

  • Wang G, Huang L, Zhang Y (2008) Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotechnol Lett 30(11):1959–1966

    Article  CAS  Google Scholar 

  • Wang H, Xiong H, Hui Z, Zeng X (2012) Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Bioresour Technol 104:215–220

    Article  CAS  Google Scholar 

  • Whitton R, Ometto F, Pidou M, Jarvis P, Villa R, Jefferson B (2015) Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment. Environ Technol Rev 4(1):133–148

    Article  CAS  Google Scholar 

  • Whitton R, Le Mével A, Pidou M, Ometto F, Villa R Jefferson B (2016) Influence of microalgal N and P composition on wastewater nutrient remediation. Water Res 91:371–378

    Article  CAS  Google Scholar 

  • World Bank (2016) World development indicators 2016. http://data.worldbank.org/. Accessed

  • Xing D, Zuo Y, Cheng S, Regan JM, Logan BE (2008) Electricity generation by Rhodopseudomonas palustris DX-1. Environ Sci Technol 42(11):4146–4151

    Article  CAS  Google Scholar 

  • Xu J, Zhao Y, Zhao G, Zhang H (2015) Nutrient removal and biogas upgrading by integrating freshwater algae cultivation with piggery anaerobic digestate liquid treatment. Appl Microbiol Biotechnol 99:6493–6501

    Article  CAS  Google Scholar 

  • Yu HQ, Hu ZH, Hong TQ, Gu GW (2002) Performance of an anaerobic filter treating soybean processing wastewater with and without effluent recycle. Process Biochem 38:507–513

    Article  CAS  Google Scholar 

  • Zhen-Feng S, Xin L, Hong-Ying H, Yin-Hu W, Tsutomu N (2011) Culture of Scenedesmus sp. LX1 in the modified effluent of a wastewater treatment plant of an electric factory by photo-membrane bioreactor. Bioresour Technol 102(17):7627–7632

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shanthakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Umamaheswari, J., Saranya, D., Abinandan, S., Megharaj, M., Subashchandrabose, S.R., Shanthakumar, S. (2020). Phycoremediation: An Integrated and Eco-friendly Approach for Wastewater Treatment and Value-Added Product Potential. In: Bharagava, R., Saxena, G. (eds) Bioremediation of Industrial Waste for Environmental Safety. Springer, Singapore. https://doi.org/10.1007/978-981-13-3426-9_13

Download citation

Publish with us

Policies and ethics