Skip to main content

Current and Future Activities in Unified Modelling and Data Assimilation at NCMRWF

  • Chapter
  • First Online:

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

State-of-the-art Numerical Weather Prediction (NWP) models can provide useful weather information in the medium-range timescales (3 to 10 days ahead) which can be applied for decision-making in different sectors like agriculture, power distribution, disaster management and water resource management. Forecasting of monsoon weather system and associated rainfall is one of the most difficult areas in NWP due to complexities in land–ocean–atmosphere interactions and due to interactions between convective systems of cloud scale, mesoscale and synoptic and planetary scales. However, significant improvements can be noticed, in recent years. Some of the chief contributors to the improvement are improved data assimilation methods, enhanced satellite coverage, high-performance computers (HPCs) and high-resolution NWP models. This chapter documents current activities at NCMRWF involving the Unified Model and its Data Assimilation used for summer monsoon forecast in the medium-range timescales. Additionally, the research efforts made for testing and implementation of ensemble models and coupled models are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aranami, K., T. Davies, and N. Wood. 2015. A mass restoration scheme for limited-area models with semi-Lagrangian advection. Quarterly Journal of the Royal Meteorological Society 141: 1795–1803.

    Article  Google Scholar 

  • Atger, F. 1999. The skill of ensemble prediction systems. Monthly Weather Review 127: 1941–1953.

    Article  Google Scholar 

  • Best, M.J., M. Pryor, D.B. Clark, G.G. Rooney, R.L.H. Essery, C.B. Ménard, J.M. Edwards, M.A. Hendry, A. Porson, N. Gedney, L.M. Mercado, S. Sitch, E. Blyth, O. Boucher, P.M. Cox, C.S.B. Grimmond, and , R.J. Harding. 2011. The Joint UK Land Environment Simulator (JULES), model description – part 1: Energy and water fluxes. Geoscientific Model Development 4 (1): 677–699.

    Article  Google Scholar 

  • Boutle, I.A., J.E.J. Eyre, and A.P. Lock. 2014. Seamless stratocumulus simulation across the turbulent gray zone. Monthly Weather Review 142: 1655–1668.

    Article  Google Scholar 

  • Boutle, I.A., A. Finnenkoetter, A.P. Lock, and H. Wells. 2016. The London model: Forecasting fog at 333 m resolution. Quarterly Journal of the Royal Meteorological Society 142: 360–371.

    Article  Google Scholar 

  • Buizza, R. 2010. Horizontal resolution impact on short and long range forecast error. Quarterly Journal of the Royal Meteorological Society 136: 1020–1035.

    Article  Google Scholar 

  • Buizza, R., and T. Palmer. 1998. Impact of ensemble size on ensemble prediction. Monthly Weather Review 126: 2503–2518.

    Article  Google Scholar 

  • Buizza, R., T. Petroliagis, T.N. Palmer, J. Barkmeijer, M. Hamrud, A. Hollingsworth, A. Simmons, and N. Wedi. 1998. Impact of model resolution and ensemble size on the performance of an ensemble prediction system. Quarterly Journal of the Royal Meteorological Society 124: 1935–1960.

    Article  Google Scholar 

  • Clayton, A. 2012. Incremental Analysis Update (IAU) Scheme. Unified Model Documentation Paper No. 31.

    Google Scholar 

  • Du, J., S.L. Mullen, and F. Sanders. 1997. Short-range ensemble forecasting of quantitative precipitation. Monthly Weather Review 125: 2427–2459.

    Article  Google Scholar 

  • Edwards, J.M., and A. Slingo. 1996. Studies with a flexible new radiation code. I: Choosing a configuration for a large‐scale model. Quarterly Journal of the Royal Meteorological Society 122: 689–719.

    Article  Google Scholar 

  • George, J.P., S. Indira Rani, A. Jayakumar, Saji Mohandas, Swapan Mallick, R. Rakhi, M.N.R. Sreevathsa, and E.N. Rajagopal. 2016. NCUM Data Assimilation System, NMRF/TR/01/2016, March 2016.

    Google Scholar 

  • Jayakumar, A., E.N. Rajagopal, I.A. Boutle, J.P. George, S. Mohandas, S. Webster, S. Aditi. 2018. An operational fog prediction system for Delhi using the 330 m Unified Model. Atmospheric Science Letters 19: e796.

    Article  Google Scholar 

  • Juhui, M.A., Y. Zhu, R. Wobus, and P. Wang. 2012. An effective configuration of ensemble size and horizontal resolution for the NCEP GEFS. Advances in Atmospheric Sciences 29: 782–794.

    Article  Google Scholar 

  • Kay, J.K., H.M. Kim, Y.Y. Park, and J. Son. 2013. Effect of doubling the ensemble size on the performance of ensemble prediction in the warm season using MOGREPS implemented at the KMA. Advances in Atmospheric Sciences 30: 1287–1302.

    Article  Google Scholar 

  • Lock, A.P., A.R. Brown, M.R. Bush, G.M. Martin, and R.N.B. Smith. 2000. A new boundary layer mixing scheme. Part I: Scheme description and single‐column model tests. Monthly Weather Review 128: 3187–3199.

    Article  Google Scholar 

  • Lodh, A., John P. George, and E.N. Rajagopal. 2016. Extended Kalman filter based land data assimilation system for soil moisture analysis at NCMRWF. Technical Report, NMRF/TR/06/2016.

    Google Scholar 

  • Mitra, A.K., A.K. Bohra, M.N. Rajeevan, and T.N. Krishnamurti. 2009. Daily Indian precipitation analysis from a merge of rain-gauge data with the TRMM TMPA satellite-derived rainfall estimates. Journal of the Meteorological Society of Japan 87A: 265–279.

    Article  Google Scholar 

  • Mitra, A.K., and coauthors. 2013a. Prediction of monsoon using a seamless coupled modelling system. Current Science 104 (10): 1369–1379.

    Google Scholar 

  • Mitra, A.K., I.M. Momin, E.N. Rajagopal, S. Basu, M.N. Rajeevan, and T.N. Krishnamurti. 2013b. Gridded daily Indian monsoon rainfall for 14 seasons: Merged TRMM and IMD gauge analyzed values. Journal of Earth System Science 122 (5): 1173–1182.

    Article  Google Scholar 

  • Mullen, S.L., and R. Buizza. 2002. The impact of horizontal resolution and ensemble size on probabilistic forecasts of precipitation by the ECMWF ensemble prediction system. Weather Forecasting 17: 173–191.

    Article  Google Scholar 

  • Rajagopal, E.N., G.R. Iyengar, John P. George, M. Das Gupta, Saji Mohandas, R. Siddharth, A. Gupta, M. Chourasia, V.S. Prasad, Aditi, K. Sharma, and A. Ashish. 2012. Implementation of Unified Model based analysis-forecast system at NCMRWF. NMRF/TR/2/2012, 45p.

    Google Scholar 

  • Rakhi, R., A. Jayakumar, M.N.R. Sreevathsa, and E.N. Rajagopal. 2016. Implementation and up-gradation of NCUM in Bhaskara HPC. NMRF/TR/03/2016, May 2016.

    Google Scholar 

  • Rawlins, F., S.P. Ballard, K.J. Bovis, A.M. Clayton, D. Li, G.W. Inverarity, A.C. Lorenc, and T.J. Payne. 2007. The Met Office global four-dimensional variational data assimilation scheme. Quarterly Journal of the Royal Meteorological Society 133: 347–362.

    Article  Google Scholar 

  • Sarkar, A., P. Chakraborty, J.P. George, and E.N. Rajagopal. 2016. Implementation of Unified Model based ensemble prediction system at NCMRWF (NEPS). NMRF/TR/02/2016.

    Google Scholar 

  • Sundqvist, H., E. Berge, and J.E. Kristjansson. 1989. Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Monthly Weather Review 117: 1641–1657.

    Article  Google Scholar 

  • Walters, D., I. Boutle, M. Brooks, T. Melvin, R. Stratton, S. Vosper, H. Wells, K. Williams, N. Wood, T. Allen, A. Bushell, D. Copsey, P. Earnshaw, J. Edwards, M. Gross, S. Hardiman, C. Harris, J. Heming, N. Klingaman, R. Levine, J. Manners, G. Martin, S. Milton, M. Mittermaier, C. Morcrette, T. Riddick, M. Roberts, C. Sanchez, P. Selwood, A. Stirling, C. Smith, D. Suri, W. Tennant, P.L. Vidale, J. Wilkinson, M. Willett, S. Woolnough, and P. Xavier. 2017. The Met Office Unified Model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations. Geoscientific Model Development 10: 1487–1520. https://doi.org/10.5194/gmd-10-1487-2017.

    Article  Google Scholar 

  • Wang, X., and C.H. Bishop. 2003. A comparison of breeding and ensemble transform Kalman Filter ensemble forecast schemes. Journal of the Atmospheric Sciences 60: 1140–1157.

    Article  Google Scholar 

  • Wilson, D.R. and S.P. Ballard. 1999. A microphysically based precipitation scheme for the UK meteorological office unified model. Quarterly Journal of the Royal Meteorological Society 125: 1607–1636.

    Article  Google Scholar 

  • Williams, K.D., and coauthors. 2015. The Met Office Global Coupled model 2.0 (GC2) configuration. Geoscientific Model Development 8: 1509–1524.

    Article  Google Scholar 

  • Wood, N., A. Staniforth, A. White, T. Allen, M. Diamantakis, M. Gross, T. Melvin, C. Smith, S. Vosper, M. Zerroukat, and J. Thuburn. 2014. An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Quarterly Journal of the Royal Meteorological Society 140: 1505–1520.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Rajagopal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajagopal, E.N. et al. (2019). Current and Future Activities in Unified Modelling and Data Assimilation at NCMRWF. In: Randall, D., Srinivasan, J., Nanjundiah, R., Mukhopadhyay, . (eds) Current Trends in the Representation of Physical Processes in Weather and Climate Models. Springer Atmospheric Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-13-3396-5_13

Download citation

Publish with us

Policies and ethics