Skip to main content

Damage Control in Abdominal Compartment Syndrome

  • Chapter
  • First Online:
Severe Trauma and Sepsis
  • 748 Accesses

Abstract

Abdominal compartment syndrome (ACS) is the endpoint of increased intra-abdominal pressure (IAP) which is the result of massive interstitial swelling in the abdomen or rapid development of a space-filling lesion within the abdomen. The intra-abdominal hypertension (IAH) leads to decreased abdomen perfusion pressure (APP) resulting in abdominal viscera dysfunction contributing to multi-organ dysfunction (MOD) and ischemia which lead to high mortality. Measurement has been taken to monitor the IAP for the contradiction between resuscitation and the massive interstitial swelling which lead to IAH. Besides the monitor measurements, damage control was introduced to save the severely injured patients who are on the edge of physiological limit. Damage control resuscitation and damage control surgery were conducted to maintain the balance among physiological limit, resuscitation, and controllable IAP. There is minimal original article about the pathophysiology of ACS. Most results were from clinical trial. Many early studies of IAH and ACS used discordant definitions or cutoff pressure values. In this review, nomenclature will follow the terminology established by the World Society of the Abdominal Compartment Syndrome (WSACS) which has recently been standardized and accepted widely. This chapter reviewed the history and the pathophysiology of ACS and the application of damage control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACS:

Abdominal compartment syndrome

APP:

Abdominal perfusion pressure

ATLS:

Advanced trauma life support

IAH:

Intra-abdominal hypertension

IAP:

Intra-abdominal pressure

ICU:

Intensive care unit

MAP:

Mean arterial pressure

MTP:

Massive transfusion protocol

OA:

Open abdomen

PCD:

Percutaneous catheter drainage

PEEP:

Positive end-expiratory pressure

PPV:

Pulse pressure variation

TAC:

Temporary abdominal closure

tPA:

Tissue plasminogen activator

WSACS:

World Society of the Abdominal Compartment Syndrome

References

  1. Kirkpatrick AW, Roberts DJ, De Waele J, Jaeschke R, Malbrain ML, De Keulenaer B, Duchesne J, Bjorck M, Leppaniemi A, Ejike JC, et al. Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the world Society of the Abdominal Compartment Syndrome. Intensive Care Med. 2013;39(7):1190–206.

    Article  Google Scholar 

  2. Bailey J, Shapiro MJ. Abdominal compartment syndrome. Crit Care. 2000;4(1):23–9.

    Article  CAS  Google Scholar 

  3. Van Hee R. Historical highlights in concept and treatment of abdominal compartment syndrome. Acta Clin Belg. 2007;62(Suppl 1):9–15.

    PubMed  Google Scholar 

  4. De Santis L, Frigo F, Bruttocao A, Terranova O. Pathophysiology of giant incisional hernias with loss of abdominal wall substance. Acta Bio-Medica: Atenei Parmensis. 2003;74(Suppl 2):34–7.

    Google Scholar 

  5. Bradley SE, Bradley GP. The effect of increased intra-abdominal pressure on renal function in man. J Clin Invest. 1947;26(5):1010–22.

    Article  CAS  Google Scholar 

  6. Bradley SE, Mudge GH, Blake WD, Alphonse P. The effect of increased intra-abdominal pressure on the renal excretion of water and electrolytes in normal human subjects and in patients with diabetes insipidus. Acta Clin Belg. 1955;10(3):209–23.

    Article  CAS  Google Scholar 

  7. Zhang AK. The potential participation of abdominal pressure in preeclampsia. Med Hypotheses. 2015;84(6):583–5.

    Article  Google Scholar 

  8. Ridings PC, Bloomfield GL, Blocher CR, Sugerman HJ. Cardiopulmonary effects of raised intra-abdominal pressure before and after intravascular volume expansion. J Trauma. 1995;39(6):1071–5.

    Article  CAS  Google Scholar 

  9. Kron IL, Harman PK, Nolan SP. The measurement of intra-abdominal pressure as a criterion for abdominal re-exploration. Ann Surg. 1984;199(1):28–30.

    Article  CAS  Google Scholar 

  10. Mullens W, Abrahams Z, Skouri HN, Francis GS, Taylor DO, Starling RC, Paganini E, Tang WH. Elevated intra-abdominal pressure in acute decompensated heart failure: a potential contributor to worsening renal function? J Am Coll Cardiol. 2008;51(3):300–6.

    Article  Google Scholar 

  11. Cattermole GN, Leung PY, Ho GY, Lau PW, Chan CP, Chan SS, Smith BE, Graham CA, Rainer TH. The normal ranges of cardiovascular parameters measured using the ultrasonic cardiac output monitor. Physiol Rep. 2017;5(6):e13195.

    Article  Google Scholar 

  12. Barnes GE, Laine GA, Giam PY, Smith EE, Granger HJ. Cardiovascular responses to elevation of intra-abdominal hydrostatic pressure. Am J Phys. 1985;248(2. Pt 2):R208–13.

    CAS  Google Scholar 

  13. Diebel LN, Wilson RF, Tagett MG, Kline RA. End-diastolic volume. A better indicator of preload in the critically ill. Archives of Surgery (Chicago, Ill: 1960). 1992;127(7):817–21.. discussion 821-812

    Article  CAS  Google Scholar 

  14. Harman PK, Kron IL, McLachlan HD, Freedlender AE, Nolan SP. Elevated intra-abdominal pressure and renal function. Ann Surg. 1982;196(5):594–7.

    Article  CAS  Google Scholar 

  15. Diebel LN, Dulchavsky SA, Wilson RF. Effect of increased intra-abdominal pressure on mesenteric arterial and intestinal mucosal blood flow. J Trauma. 1992;33(1):45–8.. discussion 48-49

    Article  CAS  Google Scholar 

  16. Peoc’h K, Nuzzo A, Guedj K, Paugam C, Corcos O. Diagnosis biomarkers in acute intestinal ischemic injury: so close, yet so far. Clin Chem Lab Med. 2017;56(3):373–85.

    Article  Google Scholar 

  17. Klingensmith NJ, Coopersmith CM. The gut as the motor of multiple organ dysfunction in critical illness. Crit Care Clin. 2016;32(2):203–12.

    Article  Google Scholar 

  18. Mittal R, Coopersmith CM. Redefining the gut as the motor of critical illness. Trends Mol Med. 2014;20(4):214–23.

    Article  Google Scholar 

  19. Clark JA, Coopersmith CM. Intestinal crosstalk: a new paradigm for understanding the gut as the “motor” of critical illness. Shock (Augusta, Ga). 2007;28(4):384–93.

    Article  CAS  Google Scholar 

  20. Carrico CJ, Meakins JL, Marshall JC, Fry D, Maier RV. Multiple-organ-failure syndrome. Archives of surgery (Chicago, Ill: 1960). 1986;121(2):196–208.

    Article  CAS  Google Scholar 

  21. Addington WR, Stephens RE, Phelipa MM, Widdicombe JG, Ockey RR. Intra-abdominal pressures during voluntary and reflex cough. Cough (London, England). 2008;4:2.

    Google Scholar 

  22. Cheatham ML, De Waele JJ, De Laet I, De Keulenaer B, Widder S, Kirkpatrick AW, Cresswell AB, Malbrain M, Bodnar Z, Mejia-Mantilla JH, et al. The impact of body position on intra-abdominal pressure measurement: a multicenter analysis. Crit Care Med. 2009;37(7):2187–90.

    Article  Google Scholar 

  23. Shapiro MB, Jenkins DH, Schwab CW, Rotondo MF. Damage control: collective review. J Trauma. 2000;49(5):969–78.

    Article  CAS  Google Scholar 

  24. Rotondo MF, Schwab CW, McGonigal MD, Phillips GR 3rd, Fruchterman TM, Kauder DR, Latenser BA, Angood PA. ‘Damage control’: an approach for improved survival in exsanguinating penetrating abdominal injury. J Trauma. 1993;35(3):375–82.. discussion 382-373

    Article  CAS  Google Scholar 

  25. Griggs C, Butler K. Damage control and the open abdomen: challenges for the nonsurgical intensivist. J Intensive Care Med. 2016;31(9):567–76.

    Article  Google Scholar 

  26. Ogilvie WH. Abdominal actinomycosis treated with sulphapyridine. Br Med J. 1940;2(4155):254–5.

    Article  CAS  Google Scholar 

  27. Shaikh IA, Ballard-Wilson A, Yalamarthi S, Amin AI. Use of topical negative pressure in assisted abdominal closure does not lead to high incidence of enteric fistulae. Color Dis. 2010;12(9):931–4.

    Article  CAS  Google Scholar 

  28. Fansler RF, Taheri P, Cullinane C, Sabates B, Flint LM. Polypropylene mesh closure of the complicated abdominal wound. Am J Surg. 1995;170(1):15–8.

    Article  CAS  Google Scholar 

  29. Keramati M, Srivastava A, Sakabu S, Rumbolo P, Smock M, Pollack J, Troop B. The Wittmann patch is a temporary abdominal closure device after decompressive celiotomy for abdominal compartment syndrome following burn. Burns. 2008;34(4):493–7.

    Article  Google Scholar 

  30. Cro C, George KJ, Donnelly J, Irwin ST, Gardiner KR. Vacuum assisted closure system in the management of enterocutaneous fistulae. Postgrad Med J. 2002;78(920):364–5.

    Article  CAS  Google Scholar 

  31. Yuan Y, Ren J, Zhang W, Chen J, Li J. The effect of different temporary abdominal closure materials on the growth of granulation tissue after the open abdomen. J Trauma. 2011;71(4):961–5.

    Article  CAS  Google Scholar 

  32. Deng Y, Ren J, Chen G, Li G, Wu X, Wang G, Gu G, Li J. Injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for abdominal tissue regeneration. Sci Rep. 2017;7(1):2699.

    Article  Google Scholar 

  33. Hashizume R, Fujimoto KL, Hong Y, Amoroso NJ, Tobita K, Miki T, Keller BB, Sacks MS, Wagner WR. Morphological and mechanical characteristics of the reconstructed rat abdominal wall following use of a wet electrospun biodegradable polyurethane elastomer scaffold. Biomaterials. 2010;31(12):3253–65.

    Article  CAS  Google Scholar 

  34. Stafiej P, Kung F, Thieme D, Czugala M, Kruse FE, Schubert DW, Fuchsluger TA. Adhesion and metabolic activity of human corneal cells on PCL based nanofiber matrices. Mater Sci Eng C Mater Biol Appl. 2017;71:764–70.

    Article  CAS  Google Scholar 

  35. Gouveia PJ, Rosa S, Ricotti L, Abecasis B, Almeida HV, Monteiro L, Nunes J, Carvalho FS, Serra M, Luchkin S, et al. Flexible nanofilms coated with aligned piezoelectric microfibers preserve the contractility of cardiomyocytes. Biomaterials. 2017;139:213–28.

    Article  CAS  Google Scholar 

  36. Stone HH, Strom PR, Mullins RJ. Management of the major coagulopathy with onset during laparotomy. Ann Surg. 1983;197(5):532–5.

    Article  CAS  Google Scholar 

  37. Burch JM, Ortiz VB, Richardson RJ, Martin RR, Mattox KL, Jordan GL Jr. Abbreviated laparotomy and planned reoperation for critically injured patients. Ann Surg. 1992;215(5):476–83.. discussion 483-474

    Article  CAS  Google Scholar 

  38. Roback JD, Caldwell S, Carson J, Davenport R, Drew MJ, Eder A, Fung M, Hamilton M, Hess JR, Luban N, et al. Evidence-based practice guidelines for plasma transfusion. Transfusion. 2010;50(6):1227–39.

    Article  Google Scholar 

  39. Brohi K, Singh J, Heron M, Coats T. Acute traumatic coagulopathy. J Trauma. 2003;54(6):1127–30.

    Article  Google Scholar 

  40. Sondeen JL, Coppes VG, Holcomb JB. Blood pressure at which rebleeding occurs after resuscitation in swine with aortic injury. J Trauma. 2003;54(5 Suppl):S110–7.

    PubMed  Google Scholar 

  41. Malone DL, Hess JR, Fingerhut A. Massive transfusion practices around the globe and a suggestion for a common massive transfusion protocol. J Trauma. 2006;60(6 Suppl):S91–6.

    Article  Google Scholar 

  42. Cohen MJ. Towards hemostatic resuscitation: the changing understanding of acute traumatic biology, massive bleeding, and damage-control resuscitation. Surg Clin North Am. 2012;92(4):877–91, viii.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, C., Ren, J. (2019). Damage Control in Abdominal Compartment Syndrome. In: Fu, X., Liu, L. (eds) Severe Trauma and Sepsis. Springer, Singapore. https://doi.org/10.1007/978-981-13-3353-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3353-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3352-1

  • Online ISBN: 978-981-13-3353-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics