Skip to main content

Investigation into the Realization of a Single Atomic Layer Removal in Nanoscale Mechanical Machining of Single Crystalline Copper

  • Chapter
  • First Online:
  • 1103 Accesses

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

It is widely believed that the minimum depth of material removal of single crystalline workpieces is one single atomic layer in nanoscale mechanical machining. However, direct evidence for this is still lacking. In this work, the minimum depth of material removal of single crystalline copper in nanoscale mechanical machining is investigated through nanoscratching using molecular dynamics simulations. We demonstrate that the minimum depth of material removal of copper workpiece can achieve a single atomic layer under certain machining conditions in nanoscale machining process. It is found that the minimum depth of material removal is closely associated with the crystal orientation and scratching direction of copper workpiece. Our results also demonstrate that even when the depth of material removal is a single atomic layer of copper workpiece under certain machining conditions, the workpiece material is not removed in a layer-by-layer fashion, which rejects the hypothesis that single crystalline metal materials can be continuously and stably removed one layer of atoms after another in nanoscale mechanical machining. These understandings not only shed light on the material removal mechanism in nanoscale mechanical machining but also provide insights into the control and optimization of nanoscale machining process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Masayoshi E, Takahito O (2003) MEMS/NEMS by micro nanomachining. IEICE Technical Report, vol 103, 13–18

    Google Scholar 

  2. Schumacher HW, Keyser UF, Zeitler U, Haug RJ, Ebert K (2000) Controlled mechanical AFM machining of two-dimensional electron systems: fabrication of a single-electron transistor. Phys E 6:860–863

    Article  Google Scholar 

  3. Sohn LL, Willett RL (1995) Fabrication of nanostructures using atomic-force-microscope-based lithography. Appl Phys Lett 67:1552–1554

    Article  Google Scholar 

  4. Dornfeld D, Min S, Takeuchi Y (2006) Recent advances in mechanical micromachining. CIRP Ann 55:745–768

    Article  Google Scholar 

  5. Brinksmeier E et al (2010) Ultra-precision grinding. CIRP Ann 59:652–671

    Article  Google Scholar 

  6. Tseng AA (2011) Removing material using atomic force microscopy with single- and multiple-tip sources. Small 7:3409–3427

    Article  Google Scholar 

  7. Fang FZ, Wu H, Liu YC (2005) Modeling and experimental investigation on nanometric cutting of monocrystalline silicon. Int J Mach Tools Manuf 45:1681–1686

    Article  Google Scholar 

  8. Fang FZ, Wu H, Zhou W, Hu XT (2007) A study on mechanism of nano-cutting single crystal silicon. J Mater Process Technol 184:407–410

    Article  Google Scholar 

  9. Pei QX, Lu C, Lee HP (2007) Large scale molecular dynamics study of nanometric machining of copper. Comput Mater Sci 41:177–185

    Article  Google Scholar 

  10. Komanduri R, Varghese S, Chandrasekaran N (2010) On the mechanism of material removal at the nanoscale by cutting. Wear 269:224–228

    Article  Google Scholar 

  11. Ikawa N, Shimada S, Tanaka H (1992) Minimum thickness of cut in micromachining. Nanotechnology 3:6–9

    Article  Google Scholar 

  12. Shimada S, Ikawa N, Tanaka H, Ohmori G, Uchikoshi J (1993) Feasibility study on ultimate accuracy in microcutting using molecular dynamics simulation. CIRP Ann 42:117–120

    Article  Google Scholar 

  13. Yuan ZJ, Zhou M, Dong S (1996) Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining. J Mater Process Technol 62:327–330

    Article  Google Scholar 

  14. Liu X, Devor RE, Kapoor SG (2006) An analytical model for the prediction of minimum chip thickness in micromachining. J Manuf Sci Eng 128:474–481

    Article  Google Scholar 

  15. Son SM, Lim HS, Ahn JH (2005) Effects of the friction on the minimum cutting thickness in micro cutting. Int J Mach Tools Manuf 45:529–535

    Article  Google Scholar 

  16. Lai XM, Li HT, Lin CF, Lin ZQ, Ni J (2007) Modeling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int J Mach Tools Manuf 48:1–14

    Article  Google Scholar 

  17. Malekian M, Mostofa MG, Park SS, Jun MB (2012) Modeling of minimum uncut chip thickness in micro machining of aluminum. J Mater Process Technol 212:553–559

    Article  Google Scholar 

  18. Li Z, Huang Y, Zhang J, Yan Y, Sun Y (2013) Atomistic insight into the minimum wear depth of Cu(111) surface. Nano. Res. Lett. 8:514

    Article  Google Scholar 

  19. Luan BQ, Robbins MO (2005) The breakdown of continuum models for mechanical contacts. Nature 435:929–932

    Article  Google Scholar 

  20. Luan B, Robbins MO (2006) Contact of single asperities with varying adhesion: comparing continuum mechanics to atomistic simulations. Phys Rev E 74:026111

    Article  Google Scholar 

  21. Urbakh M, Klafter J, Gourdon D, Israelachvili J (2004) The nonlinear nature of friction. Nature 430:525–528

    Article  Google Scholar 

  22. Szlufarskal I, Chandross M, Carpick RW (2008) Recent advances in single-asperity nanotribology. J Phys D Appl Phys 41:123001

    Article  Google Scholar 

  23. Si LN, Guo D, Luo JB, Lu XC (2010) Monoatomic layer removal mechanism in chemical mechanical polishing process: a molecular dynamics study. J Appl Phys 107:064310

    Article  Google Scholar 

  24. Custance O, Perez R, Morita S (2009) Atomic force microscopy as a tool for atom manipulation. Nat Nanotech 4:803–810

    Article  Google Scholar 

  25. Morita S (2011) Atom world based on nano-forces: 25 years of atomic force microscopy. J Electron Spectrosc 60:S199–S211

    Google Scholar 

  26. Kawai K et al (2014) Atom manipulation on an insulating surface at room temperature. Nat Common 5:4403

    Article  Google Scholar 

  27. Gotsmann B, Lantz M (2008) Atomistic wear in a single asperity sliding contact. Phys Rev Lett 101:125501

    Article  Google Scholar 

  28. Bhaskaran H et al (2010) Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat Nanotech 5:181–185

    Article  Google Scholar 

  29. Jacobs T, Carpick RW (2013) Nanoscale wear as a stress-assisted chemical reaction. Nat Nanotech 8:108–112

    Article  Google Scholar 

  30. Moriwaki T, Okuda K (1989) Machinability of copper in ultra-precision micro diamond cutting. CIRP Ann 38:115–118

    Article  Google Scholar 

  31. Lucca DA, Seo YW, Rhorer RL (1994) Energy dissipation and tool-workpiece contact in ultra-precision machining. Tribol Trans 37:651–655

    Article  Google Scholar 

  32. Komanduri R, Raff LM (2001) A review on the molecular dynamics simulation of machining at the atomic scale. Proc I Mech E Part B 215:1639–1672

    Article  Google Scholar 

  33. Yan YD, Sun T, Dong S, Luo XC, Liang YC (2006) Molecular dynamics simulation of processing using AFM pin tool. Appl Surf Sci 252:7523–7531

    Article  Google Scholar 

  34. Fang T, Weng C (2000) Three-dimensional molecular dynamics analysis of processing using a pin tool on the atomic scale. Nanotechnology 8:148–153

    Article  Google Scholar 

  35. Zhu PZ, Hu YZ, Ma TB, Wang H (2010) Study of AFM-based nanometric cutting process using molecular dynamics. Appl Surf Sci 256:7160–7165

    Article  Google Scholar 

  36. Shi J, Shi Y, Liu CR (2010) Evaluation of three dimensional single point turning at atomistic level by molecular dynamics simulation. Int J Adv Manuf Technol 8:161–171

    Google Scholar 

  37. Tong Z, Liang Y, Jiang X, Luo X (2014) An atomistic investigation on the mechanism of machining nanostructures when using single tip and multi-tip diamond tools. Appl Surf Sci 290:458–465

    Article  Google Scholar 

  38. Li J, Fang QH, Liu YW, Zhang LC (2014) A molecular dynamics investigation into the mechanisms of subsurface damage and material removal of monocrystalline copper subjected to nanoscale high speed grinding. Appl Surf Sci 303:331–343

    Article  Google Scholar 

  39. Hu CK et al (1995) Copper interconnection: integration and reliability. Thin Solid Films 262:84–92

    Article  Google Scholar 

  40. Lyshevski SE (2002) MEMS and NEMS: systems, devices, and structures. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  41. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  Google Scholar 

  42. Ziegenhain G, Urbassek HM, Hartmaier A (2010) Influence of crystal anisotropy on elastic deformation and onset of plasticity in nanoindentation: a simulational study. J Appl Phys 107:061807

    Article  Google Scholar 

  43. Komanduri R, Chandrasekaran N, Raff LMMD (2000) Simulation of nanometric cutting of single crystal aluminum-effect of crystal orientation and direction of cutting. Wear 242:60–88

    Article  Google Scholar 

  44. Rapaport DC (1995) The art of molecular dynamics simulation. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  45. Zhou XW, Johnson RA, Wadley HNG (2004) Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys Rev B 69:144113

    Article  Google Scholar 

  46. Daw MS, Baskes MI (1984) Embedded atom method: derivation and application to impurities, surfaces and other defects in metals. Phys Rev B 29:6443

    Article  Google Scholar 

  47. Zhou XW et al (2001) Atomic scale structure of sputtered metal multilayers. Acta Mater 49:4005

    Article  Google Scholar 

  48. Khomenko AV, Prodanov NV, Persson BNJ (2013) Atomistic modelling of friction of Cu and Au nanoparticles adsorbed on graphene. Condens Matter Phys 16:33401

    Article  Google Scholar 

  49. Zhu PZ, Hu YZ, Ma TB, Wang H (2011) Molecular dynamics study on friction due to ploughing and adhesion in nanometric scratching process. Tribol Lett 41:41–46

    Article  Google Scholar 

  50. Maekawa K, Itoh A (1995) Friction and tool wear in nano-scale machining—a molecular dynamics approach. Wear 188:115–122

    Article  Google Scholar 

  51. Shimizu J, Eda H, Zhou L, Okabe H (2008) Molecular dynamics simulation of adhesion effect on material removal and tool wear in diamond grinding of silicon wafer. Tribol Online 3:248–253

    Article  Google Scholar 

  52. Zhu PZ, Fang FZ (2012) Molecular dynamics simulations of nanoindentation of monocrystalline Germanium. Appl Phys A 108:415–421

    Article  Google Scholar 

  53. Rentsch R, Inasaki I (1994) Molecular dynamics simulation for abrasive processes. CIRP Ann 43:327–330

    Article  Google Scholar 

  54. Li Q, Dong Y, Perez D, Martini A, Carpick RW (2011) Speed dependence of atomic stick-slip friction in optimally matched experiments and molecular dynamics simulations. Phys Rev Lett 106:126101

    Article  Google Scholar 

  55. Egberts P et al (2013) Environmental dependence of atomic-scale friction at graphite surface steps. Phys Rev B 88:035409

    Article  Google Scholar 

  56. Çakīr O, Yardimeden A, Ozben T, Kilickap E (2007) Selection of cutting fluids in machining processes. J Achieve Mater Manuf Eng 25:99–102

    Google Scholar 

  57. Zhou LB, Hosseini BS, Tsuruga T, Shimizu J, Eda H (2007) Fabrication and evaluation for extremely thin Si wafer. Int J Abras Technol 1:94–105

    Article  Google Scholar 

  58. Hu XL, Sundararajan S, Martini A (2014) The effects of adhesive strength and load on material transfer in nanoscale wear. Comput Mater Sci 95:464–469

    Article  Google Scholar 

  59. Barthel AJ, Al-Azizi A, Surdyka ND, Kim SH (2014) Effects of gas or vapor adsorption on adhesion, friction, and wear of solid interfaces. Langmuir 30:2977–2992

    Article  Google Scholar 

  60. Ryan KE et al (2014) Simulated adhesion between realistic hydrocarbon materials: effects of composition, roughness, and contact point. Langmuir 30:2028–2037

    Article  Google Scholar 

  61. Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58:11085–11088

    Article  Google Scholar 

  62. Zhu PZ, Hu YZ, Wang H, Ma TB (2011) Study of effect of indenter shape in nanometric scratching process using molecular dynamics. Mater Sci Eng, A 528:4522–4527

    Article  Google Scholar 

  63. Dieter GE (1986) Mechanical metallurgy. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51405337), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130032120065), and the Natural Science Foundation of Tianjin (No. 15JCQNJC04800).

The original work is published in Computational Materials Science (2016, 118:192–202), and the support of Elsevier BV is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengzhe Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, P., Li, J. (2019). Investigation into the Realization of a Single Atomic Layer Removal in Nanoscale Mechanical Machining of Single Crystalline Copper. In: Zhang, J., Guo, B., Zhang, J. (eds) Simulation and Experiments of Material-Oriented Ultra-Precision Machining. Springer Tracts in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-3335-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3335-4_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3334-7

  • Online ISBN: 978-981-13-3335-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics