Skip to main content

Nitrogen-Vacancy Color Centers in Diamond Fabricated by Ultrafast Laser Nanomachining

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

Nitrogen-vacancy (NV) color center is one kind of luminescent point defect in diamond. NV color center is a composite structure composed of substituted nitrogen atoms and adjacent carbon vacancies in diamond. It can be applied in many fields, such as super-resolution fluorescence imaging, high-sensitive detection, and quantum computing. In order to meet the requirements of NV color center’s applications, many efforts have been devoted to study the manufacturing methods of NV color center. Nowadays, femtosecond (fs) laser technology has been widely used in the field of micro/nanomachining and gradually applied to the manufacturing of diamond NV color centers. In this chapter, the mechanism and characteristics of fs laser micro/nanomachining, the basic properties, and the applications of diamond NV color centers were concisely summarized. Moreover, the ultrafast laser processing of NV color center, the fluorescence detection of NV color center, and the anti-bunching analysis method of single NV color center are introduced and discussed in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Acosta V, Hemmer P (2013) Nitrogen-vacancy centers: physics and applications. MRS Bull 38:127–130

    Article  Google Scholar 

  2. Köhler J et al (1993) Magnetic resonance of a single molecular spin. Nature 363(6426):242–244

    Article  Google Scholar 

  3. Wrachtrup J et al (1993) Optical detection of magnetic resonance in a single molecule. Nature 363(6426):244–245

    Article  Google Scholar 

  4. Gruber A (1997) Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276(5321):2012–2014

    Article  Google Scholar 

  5. Balasubramanian G et al (2009) Ultralong spin coherence time in isotopically engineered diamond. Nat Mater 8(5):383–387

    Article  Google Scholar 

  6. Acosta VM et al (2010) Optical properties of the nitrogen-vacancy singlet levels in diamond. Phys Rev B 82(20):2889–2898

    Article  Google Scholar 

  7. Rondin L et al (2015) Magnetometry with nitrogen-vacancy defects in diamond. Cheminform 45(42):056503

    Google Scholar 

  8. Mcguinness LP et al (2011) Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat Nanotechnol 6(6):358–363

    Article  Google Scholar 

  9. Schuster DI et al (2010) High-cooperativity coupling of electron-spin ensembles to superconducting cavities. Phys Rev Lett 105(14):140501

    Article  Google Scholar 

  10. Maletinsky P et al (2012) A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat Nanotechnol 7(5):320

    Article  Google Scholar 

  11. Kubanek A et al (2012) Quantum interference of single photons from two remote nitrogen-vacancy centers in diamond. In: Meeting of the APS division of atomic, molecular and optical physics

    Google Scholar 

  12. Schell AW et al (2014) Scanning single quantum emitter fluorescence lifetime imaging: quantitative analysis of the local density of photonic states. Nano Lett 14(5):2623–2627

    Article  Google Scholar 

  13. Cuche A et al (2010) “Deterministic” quantum plasmonics. Nano Lett 10(11):4566

    Article  Google Scholar 

  14. Zaitsev SAM (2001) Optical Properties of Diamond. Springer, Berlin, Heidelberg, pp 5090–5097

    Chapter  Google Scholar 

  15. Koizumi S, Nebel CE, Nesladek M (2008) Physics and applications of CVD diamond. Wiley, Weinheim

    Google Scholar 

  16. Jelezko F, Wrachtrup J (2010) Single defect centres in diamond: a review. Phys Status Solidi 203(13):3207–3225

    Article  Google Scholar 

  17. Mildren, Assoc. Rich P, Rabeau AJR (2013) Optical quality diamond grown by chemical vapor deposition. Optical engineering of diamond. Wiley‐VCH Verlag GmbH & Co. KGaA

    Google Scholar 

  18. Suter D, Jelezko F (2017) Single-spin magnetic resonance in the nitrogen-vacancy center of diamond. Prog Nucl Magn Reson Spectrosc 98–99:50

    Article  Google Scholar 

  19. Davies G, Hamer MF (1976) Optical studies of the 1.945 eV vibronic band in diamond. Proc R Soc Math Phys Eng Sci 348(1653):285–298

    Article  Google Scholar 

  20. Doherty MW et al (2013) The nitrogen-vacancy colour centre in diamond. Phys Rep 528(1):1–45

    Article  Google Scholar 

  21. Wang J (2016) Preparation and spin coherence of NV centers in diamond and temperature detection application. University of Science Technology of China

    Google Scholar 

  22. Liu Y (2016) Generation of single photons based on color centers in diamond and investigation on its fluorescence dynamics. East China Normal University

    Google Scholar 

  23. Balasubramanian G et al (2014) Nitrogen-vacancy color center in diamond-emerging nanoscale applications in bioimaging and biosensing. Curr Opin Chem Biol 20(20):69–77

    Article  Google Scholar 

  24. Orwa JO et al (2011) Engineering of nitrogen-vacancy color centers in high purity diamond by ion implantation and annealing. J Appl Phys 109(8):3207

    Article  Google Scholar 

  25. Plakhotnik T, Aman H (2017) NV-centers in nanodiamonds: how good they are. Diam Relat Mater 82:87–95

    Article  Google Scholar 

  26. Berthel M et al (2016) Photophysics of single nitrogen-vacancy centers in diamond nanocrystals. Phys Rev B 91(3):035308

    Google Scholar 

  27. Felton S et al (2008) Electron paramagnetic resonance studies of the neutral nitrogen vacancy in diamond. Phys Rev B: Condens Matter 77(77):439–446

    Google Scholar 

  28. Lenef A, Rand SC (1996) Electronic structure of the N-V center in diamond: theory. Phys Rev B: Condens Matter 53(56):13427–13440

    Article  Google Scholar 

  29. Manson NB, Harrison JP, Sellars MJ (2006) Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics. Phys Rev B Cond matter 74(10):104303

    Google Scholar 

  30. Fuchs GD et al (2011) A quantum memory intrinsic to single nitrogen–vacancy centres in diamond. Nat Phys 7(10):789–793

    Article  Google Scholar 

  31. Kong X (2015) Magnetic resonance towards single nuclear spin sensitivity based on single solidstate spin in diamond. University of Science and Technology of China

    Google Scholar 

  32. Dumeige Y et al (2014) Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption in a doubly resonant optical cavity. Phys Rev B 87(15):155202

    Article  Google Scholar 

  33. Nizovtsev AP et al (2001) Modeling fluorescence of single nitrogen–vacancy defect centers in diamond. Phys B Phys Condens Matter 308(308):608–611

    Article  Google Scholar 

  34. Lesik M (2015) Engineering of NV color centers in diamond for their applications in quantum information and magnetometry

    Google Scholar 

  35. Gisin N et al (2001) Quantum cryptography. Rev Mod Phys 74(1):145–195

    Article  MATH  Google Scholar 

  36. Groeblacher S et al (2005) Experimental quantum cryptography with qutrits. New J Phys 8(5):75

    Google Scholar 

  37. Dutt MVG et al (2007) Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316(5829):1312–1316

    Article  Google Scholar 

  38. Bernien H et al (2012) Heralded entanglement between solid-state qubits separated by 3 meters. In: APS division of atomic, molecular and optical physics meeting

    Google Scholar 

  39. Tsukanov AV (2013) Quantum memory based on ensemble states of NV centers in diamond. Russ Microlectron 42(3):127–147

    Article  Google Scholar 

  40. Rivas A, Huelga SF, Plenio MB (2010) Entanglement and non-markovianity of quantum evolutions. Phys Rev Lett 105(5):050403

    Google Scholar 

  41. Abe E, Sasaki K (2018) Tutorial: magnetic resonance with nitrogen-vacancy centers in diamond—microwave engineering, materials science, and magnetometry. J Appl Phys 123(16):161101

    Article  Google Scholar 

  42. Maze JR et al (2008) Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455(7213):644–647

    Article  Google Scholar 

  43. Dolde F et al (2011) Electric-field sensing using single diamond spins. Nat Phys 7(6):459–463

    Article  Google Scholar 

  44. Glenn DR et al (2018) High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature 555(7696):351

    Article  Google Scholar 

  45. Grazioso F et al (2013) Measurement of the full stress tensor in a crystal using photoluminescence from point defects: the example of nitrogen vacancy centers in diamond. Appl Phys Lett 103(10):133

    Article  Google Scholar 

  46. Kucsko G et al (2013) Nanometer scale quantum thermometry in a living cell. Physics 500(7460):54–58

    Google Scholar 

  47. Ajoy A et al (2015) Atomic-scale nuclear spin imaging using quantum-assisted sensors in diamond. Phys. Rev X 5(1):011001

    Google Scholar 

  48. Fu CC et al (2007) Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci U S A 104(3):727–732

    Article  Google Scholar 

  49. Neugart Felix et al (2007) Dynamics of diamond nanoparticles in solution and cells. Nano Lett 7(12):3588–3591

    Article  Google Scholar 

  50. Fang CY et al (2011) The exocytosis of fluorescent nanodiamond and its use as a long-term cell tracker. Small 7(23):3363–3370

    Article  Google Scholar 

  51. Mohan N et al (2010) In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett 10(9):3692–3699

    Article  Google Scholar 

  52. Simpson DA et al (2014) In vivo imaging and tracking of individual nanodiamonds in drosophila melanogaster embryos. Biomed Opt Express 5(4):1250–1261

    Article  Google Scholar 

  53. Kuo Y et al (2013) Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo. Biomaterials 34(33):8352–8360

    Article  Google Scholar 

  54. Wu TJ et al (2013) Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds. Nat Nanotechnol 8(9):682–689

    Article  Google Scholar 

  55. Han KY et al (2009) Optimizing fluorophores for super-resolution fluorescence STED microscopy. Biophys J 96(3):637a–637a

    Article  MathSciNet  Google Scholar 

  56. Rittweger E et al (2015) STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photonics 3(3):144–147

    Article  Google Scholar 

  57. Wildanger D et al (2012) Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization. Adv Mater 24(44): OP309–OP313

    Article  Google Scholar 

  58. Mazur E (2008) Femtosecond laser micromachining in transparent materials. Nat Photonics 2(4):219–225

    Article  Google Scholar 

  59. Schaffer CB, Brodeur A, Mazur E, Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Measur Sci Technol 12(11):1784–1794

    Article  Google Scholar 

  60. Ams M et al (2008) Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics. IEEE J Sel Top Quant Electron 14(5):1370–1381

    Article  Google Scholar 

  61. Mao SS et al (2004) Dynamics of femtosecond laser interactions with dielectrics. Appl Phys A 79(7):1695–1709

    Article  Google Scholar 

  62. Tan D et al (2016) Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications. Prog Mater Sci 76(1):154–228

    Article  Google Scholar 

  63. Qiu J, Miura K, Hirao K (2008) Femtosecond laser-induced microfeatures in glasses and their applications. J Non-Cryst Solids 354(12–13):1100–1111

    Article  Google Scholar 

  64. Mysyrowicz A et al (2003) Femtosecond laser irradiation stress induced in pure silica. Opt Express 11(9):1070–1079

    Article  Google Scholar 

  65. Joglekar AP et al (2004) Optics at critical intensity: applications to nanomorphing. Proc Natl Acad Sci U S A 101(16):5856–5861

    Article  Google Scholar 

  66. Macandrew JA (1988) The programme. Optica Acta Int J Opt 303–316

    Google Scholar 

  67. Kane DJ, Trebino R (1993) Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating. J Opt Soc Am A 10(5):1101–1111

    Article  Google Scholar 

  68. Trebino R et al (1997) Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev Sci Instrum 68(9):3277–3295

    Article  Google Scholar 

  69. Meijer J (2004) Laser beam machining (LBM), state of the art and new opportunities. J Mater Process Technol 149(1):2–17

    Article  Google Scholar 

  70. Küper S, Stuke M (1988) Ablation of uv-transparent materials with femtosecond UV excimer laser pulses. MRS Proc 129(1–4):475–480

    Google Scholar 

  71. Dumeige Y et al (2004) Photo-induced creation of nitrogen-related color centers in diamond nanocrystals under femtosecond illumination. J Lumin 109(2):61–67

    Article  Google Scholar 

  72. Wu B et al (2013) Fabrication of nitrogen vacancy color centers by femtosecond pulse laser illumination. Opt Express 21(10):12843–12848

    Article  Google Scholar 

  73. Chen YC et al (2016) Laser writing of coherent colour centres in diamond. Nat Photonics 11:77

    Article  Google Scholar 

  74. Kononenko VV et al (2017) Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique. Appl Phys Lett 111(8):081101

    Article  Google Scholar 

  75. Sotillo B et al (2017) Visible to infrared diamond photonics enabled by focused femtosecond laser pulses. Micromachines 8(2):60

    Article  Google Scholar 

  76. Kasparian J, Sauerbrey R, Chin SL (2000) The critical laser intensity of self-guided light filaments in air. Appl Phys B 71(6):877–879

    Article  Google Scholar 

  77. Tzortzakis S et al (2002) Femtosecond laser-guided electric discharge in air. In: Conference digest: 2000 international quantum electronics conference

    Google Scholar 

  78. Kasparian J et al (2003) White-light filaments for atmospheric analysis. Science 301(5629):61–64

    Article  Google Scholar 

  79. Sprangle P, Peñano JR, Hafizi B (2002) Propagation of intense short laser pulses in the atmosphere. Phys Rev E Stat Nonlinear Soft Matter Phys 66(2): 046418

    Google Scholar 

  80. Couairon A, Mysyrowicz A (2007) Femtosecond filamentation in transparent media. Phys Rep 441(2):47–189

    Article  Google Scholar 

  81. York AG et al (2008) Direct acceleration of electrons in a corrugated plasma waveguide. Phys Rev Lett 100(19):195001

    Article  Google Scholar 

  82. Shi L et al (2011) Generation of high-density electrons based on plasma grating induced Bragg diffraction in air. Phys Rev Lett 107(9):095004

    Article  Google Scholar 

  83. Lagomarsino S et al (2016) Photoionization of monocrystalline CVD diamond irradiated with ultrashort intense laser pulse. Phys Rev B. 93(8):085128

    Google Scholar 

  84. Sun B, Salter PS, Booth MJ (2014) High conductivity micro-wires in diamond following arbitrary paths. Appl Phys Lett 105(23):397

    Article  Google Scholar 

  85. Yamamoto T et al (2013) Extending spin coherence times of diamond qubits by high temperature annealing. Phys Rev B 88(7):4049–4056

    Article  Google Scholar 

  86. Chu Y et al (2014) Coherent optical transitions in implanted nitrogen vacancy centers. Nano Lett 14(4):1982–1986

    Article  Google Scholar 

  87. Cuche A et al (2009) Near-field optical microscopy with a nanodiamond-based single photon tip. Opt Express 17(22):19969–19980

    Article  Google Scholar 

  88. Drezet A et al (2015) Near-field microscopy with a scanning nitrogen-vacancy color center in a diamond nanocrystal: a brief review. Micron 70:55–63

    Article  Google Scholar 

  89. Patel RN et al (2015) Efficient photon coupling from a diamond nitrogen vacancy center by integration with silica fiber. Light Sci Appl 5(2):e16032

    Article  Google Scholar 

  90. Gaebel T et al (2004) Stable single-photon source in the near infrared. New J of Phys 6(1):98

    Article  Google Scholar 

  91. Kurtsiefer C et al (2002) Stable solid-state source of single photons. Phys Rev Lett 85(2):290–293

    Article  Google Scholar 

  92. Englund D et al (2010) Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. Nano Lett 10(10):3922

    Article  Google Scholar 

  93. Faraon A et al (2011) Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nat Photonics 5(5):301–305

    Article  Google Scholar 

  94. Riedrichmöller J et al (2011) One- and two-dimensional photonic crystal microcavities in single crystal diamond. Nat Nanotechnol 7(1):69

    Article  Google Scholar 

  95. Mclellan CA et al (2015) Patterned formation of highly coherent nitrogen-vacancy centers using a focused electron irradiation technique. Nano Lett 16(4):2450–2454

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the National Natural Science Foundation of China (No. 51575389, 51511130074), National Natural Science Foundation of China (NSFC)-German Research Foundation (DFG) International Joint Research Programme (51761135106), the Natural Science Foundation of Tianjin (15JCYBJC19400), State key laboratory of precision measuring technology and instruments (Pilt1705), and the ‘111’ project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China (Grant No. B07014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongwei Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shi, C., Luo, H., Xu, Z., Fang, F. (2019). Nitrogen-Vacancy Color Centers in Diamond Fabricated by Ultrafast Laser Nanomachining. In: Zhang, J., Guo, B., Zhang, J. (eds) Simulation and Experiments of Material-Oriented Ultra-Precision Machining. Springer Tracts in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-3335-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3335-4_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3334-7

  • Online ISBN: 978-981-13-3335-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics