Skip to main content

Changes in the Nuclear Envelope in Laminopathies

  • Chapter
  • First Online:
Book cover Biochemical and Biophysical Roles of Cell Surface Molecules

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1112))

Abstract

Double-membrane-bound nucleus is the major organelle of every metazoan cell, which controls various nuclear processes like chromatin maintenance, DNA replication, transcription and nucleoskeleton-cytoskeleton coupling. Nuclear homeostasis depends on the integrity of nuclear membrane and associated proteins. Lamins, underlying the inner nuclear membrane (INM), play a crucial role in maintaining nuclear homeostasis. In this review, we have focussed on the disruption of nuclear homeostasis due to lamin A/C mutation which produces a plethora of diseases, termed as laminopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Haboubi T, Shumaker DK, Koser J, Wehnert M, Fahrenkrog B (2011) Distinct association of the nuclear pore protein Nup153 with A- and B-type lamins. Nucleus 2:500–509

    Article  Google Scholar 

  • Clayton P, Fischer B, Mann A, Mansour S, Rossier E, Veen M, Lang C, Baasanjav S, Kieslich M, Brossuleit K et al (2010) Mutations causing Greenberg dysplasia but not Pelger anomaly uncouple enzymatic from structural functions of a nuclear membrane protein. Nucleus 1:354–366

    Article  Google Scholar 

  • Daigle N, Beaudouin J, Hartnell L, Imreh G, Hallberg E, Lippincott-Schwartz J, Ellenberg J (2001) Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells. J Cell Biol 154:71–84

    Article  CAS  Google Scholar 

  • Davies BS, Barnes RH 2nd, Tu Y, Ren S, Andres DA, Spielmann HP, Lammerding J, Wang Y, Young SG, Fong LG (2010) An accumulation of non-farnesylated prelamin A causes cardiomyopathy but not progeria. Hum Mol Genet 19:2682–2694

    Article  CAS  Google Scholar 

  • Davies BS, Coffinier C, Yang SH, Barnes RH 2nd, Jung HJ, Young SG, Fong LG (2011) Investigating the purpose of prelamin A processing. Nucleus 2:4–9

    Article  Google Scholar 

  • Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD (2008) Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22:832–853

    Article  CAS  Google Scholar 

  • Eibauer M, Pellanda M, Turgay Y, Dubrovsky A, Wild A, Medalia O (2015) Structure and gating of the nuclear pore complex. Nat Commun 6:7532

    Article  CAS  Google Scholar 

  • Fidzianska A, Bilinska ZT, Tesson F, Wagner T, Walski M, Grzybowski J, Ruzyllo W, Hausmanowa-Petrusewicz I (2008) Obliteration of cardiomyocyte nuclear architecture in a patient with LMNA gene mutation. J Neurol Sci 271:91–96

    Article  CAS  Google Scholar 

  • Gaines P, Tien CW, Olins AL, Olins DE, Shultz LD, Carney L, Berliner N (2008) Mouse neutrophils lacking Lamin B-receptor expression exhibit aberrant development and lack critical functional responses. Exp Hematol 36:965–976

    Article  CAS  Google Scholar 

  • Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE, Gordon LB, Gruenbaum Y, Khuon S, Mendez M, Varga R et al (2004) Accumulation of mutant Lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA 101:8963–8968

    Article  CAS  Google Scholar 

  • Grady RM, Starr DA, Ackerman GL, Sanes JR, Han M (2005) Syne proteins anchor muscle nuclei at the neuromuscular junction. Proc Natl Acad Sci USA 102:4359–4364

    Article  CAS  Google Scholar 

  • Gupta P, Bilinska ZT, Sylvius N, Boudreau E, Veinot JP, Labib S, Bolongo PM, Hamza A, Jackson T, Ploski R et al (2010) Genetic and ultrastructural studies in dilated cardiomyopathy patients: a large deletion in the Lamin A/C gene is associated with cardiomyocyte nuclear envelope disruption. Basic Res Cardiol 105:365–377

    Article  Google Scholar 

  • Hawryluk-Gara LA, Shibuya EK, Wozniak RW (2005) Vertebrate Nup53 interacts with the nuclear lamina and is required for the assembly of a Nup93-containing complex. Mol Biol Cell 16:2382–2394

    Article  CAS  Google Scholar 

  • Hegele RA, Cao H, Liu DM, Costain GA, Charlton-Menys V, Rodger NW, Durrington PN (2006) Sequencing of the reannotated LMNB2 gene reveals novel mutations in patients with acquired partial lipodystrophy. Am J Hum Genet 79:383–389

    Article  CAS  Google Scholar 

  • Hennekes H, Nigg EA (1994) The role of isoprenylation in membrane attachment of nuclear lamins. A single point mutation prevents proteolytic cleavage of the Lamin A precursor and confers membrane binding properties. J Cell Sci 107(Pt 4):1019–1029

    CAS  PubMed  Google Scholar 

  • Hoffmann K, Dreger CK, Olins AL, Olins DE, Shultz LD, Lucke B, Karl H, Kaps R, Muller D, Vaya A et al (2002) Mutations in the gene encoding the Lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger-Huet anomaly). Nat Genet 31:410–414

    Article  CAS  Google Scholar 

  • Holmer L, Pezhman A, Worman HJ (1998) The human Lamin B receptor/sterol reductase multigene family. Genomics 54:469–476

    Article  CAS  Google Scholar 

  • Houben F, Ramaekers FC, Snoeckx LH, Broers JL (2007) Role of nuclear lamina-cytoskeleton interactions in the maintenance of cellular strength. Biochim Biophys Acta 1773:675–686

    Article  CAS  Google Scholar 

  • Kelley K, Knockenhauer KE, Kabachinski G, Schwartz TU (2015) Atomic structure of the Y complex of the nuclear pore. Nat Struct Mol Biol 22:425–431

    Article  CAS  Google Scholar 

  • Lammerding J, Hsiao J, Schulze PC, Kozlov S, Stewart CL, Lee RT (2005) Abnormal nuclear shape and impaired mechanotransduction in emerin-deficient cells. J Cell Biol 170:781–791

    Article  CAS  Google Scholar 

  • Luke Y, Zaim H, Karakesisoglou I, Jaeger VM, Sellin L, Lu W, Schneider M, Neumann S, Beijer A, Munck M et al (2008) Nesprin-2 Giant (NUANCE) maintains nuclear envelope architecture and composition in skin. J Cell Sci 121:1887–1898

    Article  Google Scholar 

  • Lussi YC, Hugi I, Laurell E, Kutay U, Fahrenkrog B (2011) The nucleoporin Nup88 is interacting with nuclear Lamin A. Mol Biol Cell 22:1080–1090

    Article  CAS  Google Scholar 

  • Nikolakaki E, Meier J, Simos G, Georgatos SD, Giannakouros T (1997) Mitotic phosphorylation of the Lamin B receptor by a serine/arginine kinase and p34(cdc2). J Biol Chem 272:6208–6213

    Article  CAS  Google Scholar 

  • Padiath QS, Saigoh K, Schiffmann R, Asahara H, Yamada T, Koeppen A, Hogan K, Ptacek LJ, Fu YH (2006) Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat Genet 38:1114–1123

    Article  CAS  Google Scholar 

  • Pan Y, Garg A, Agarwal AK (2007) Mislocalization of prelamin A Tyr646Phe mutant to the nuclear pore complex in human embryonic kidney 293 cells. Biochem Biophys Res Commun 355:78–84

    Article  CAS  Google Scholar 

  • Rober RA, Weber K, Osborn M (1989) Differential timing of nuclear Lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. Development 105:365–378

    CAS  PubMed  Google Scholar 

  • Rowat AC, Lammerding J, Ipsen JH (2006) Mechanical properties of the cell nucleus and the effect of emerin deficiency. Biophys J 91:4649–4664

    Article  CAS  Google Scholar 

  • Rusinol AE, Sinensky MS (2006) Farnesylated lamins, progeroid syndromes and farnesyl transferase inhibitors. J Cell Sci 119:3265–3272

    Article  CAS  Google Scholar 

  • Smythe C, Jenkins HE, Hutchison CJ (2000) Incorporation of the nuclear pore basket protein nup153 into nuclear pore structures is dependent upon lamina assembly: evidence from cell-free extracts of Xenopus eggs. EMBO J 19:3918–3931

    Article  CAS  Google Scholar 

  • Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S, Zwerger M, Cohen TV, Devys D, Foisner R, Peichl L et al (2013) LBR and Lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152:584–598

    Article  CAS  Google Scholar 

  • Stegh AH, Herrmann H, Lampel S, Weisenberger D, Andra K, Seper M, Wiche G, Krammer PH, Peter ME (2000) Identification of the cytolinker plectin as a major early in vivo substrate for caspase 8 during CD95- and tumor necrosis factor receptor-mediated apoptosis. Mol Cell Biol 20:5665–5679

    Article  CAS  Google Scholar 

  • Stewart CL, Kozlov S, Fong LG, Young SG (2007) Mouse models of the laminopathies. Exp Cell Res 313:2144–2156

    Article  CAS  Google Scholar 

  • Suh Y, Kennedy BK (2012) Dialing down SUN1 for laminopathies. Cell 149:509–510

    Article  CAS  Google Scholar 

  • Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K, Stewart CL, Burke B (1999) Loss of A-type Lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147:913–920

    Article  CAS  Google Scholar 

  • Talamas JA, Hetzer MW (2011) POM121 and Sun1 play a role in early steps of interphase NPC assembly. J Cell Biol 194:27–37

    Article  CAS  Google Scholar 

  • Tapley EC, Starr DA (2013) Connecting the nucleus to the cytoskeleton by SUN-KASH bridges across the nuclear envelope. Curr Opin Cell Biol 25:57–62

    Article  CAS  Google Scholar 

  • Ulbert S, Antonin W, Platani M, Mattaj IW (2006) The inner nuclear membrane protein Lem2 is critical for normal nuclear envelope morphology. FEBS Lett 580:6435–6441

    Article  CAS  Google Scholar 

  • Vargas JD, Hatch EM, Anderson DJ, Hetzer MW (2012) Transient nuclear envelope rupturing during interphase in human cancer cells. Nucleus 3:88–100

    Article  Google Scholar 

  • Vaughan A, Alvarez-Reyes M, Bridger JM, Broers JL, Ramaekers FC, Wehnert M, Morris GE, Whitfield WGF, Hutchison CJ (2001) Both emerin and Lamin C depend on Lamin A for localization at the nuclear envelope. J Cell Sci 114:2577–2590

    CAS  PubMed  Google Scholar 

  • Vergnes L, Peterfy M, Bergo MO, Young SG, Reue K (2004) Lamin B1 is required for mouse development and nuclear integrity. Proc Natl Acad Sci USA 101:10428–10433

    Article  CAS  Google Scholar 

  • Vigouroux C, Auclair M, Dubosclard E, Pouchelet M, Capeau J, Courvalin JC, Buendia B (2001) Nuclear envelope disorganization in fibroblasts from lipodystrophic patients with heterozygous R482Q/W mutations in the Lamin A/C gene. J Cell Sci 114:4459–4468

    CAS  PubMed  Google Scholar 

  • Yewdell WT, Colombi P, Makhnevych T, Lusk CP (2011) Lumenal interactions in nuclear pore complex assembly and stability. Mol Biol Cell 22:1375–1388

    Article  CAS  Google Scholar 

  • Zhang Q, Bethmann C, Worth NF, Davies JD, Wasner C, Feuer A, Ragnauth CD, Yi Q, Mellad JA, Warren DT et al (2007a) Nesprin-1 and -2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum Mol Genet 16:2816–2833

    Article  CAS  Google Scholar 

  • Zhang X, Xu R, Zhu B, Yang X, Ding X, Duan S, Xu T, Zhuang Y, Han M (2007b) Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development 134:901–908

    Article  CAS  Google Scholar 

  • Zhou Z, Du X, Cai Z, Song X, Zhang H, Mizuno T, Suzuki E, Yee MR, Berezov A, Murali R et al (2012) Structure of Sad1-UNC84 homology (SUN) domain defines features of molecular bridge in nuclear envelope. J Biol Chem 287:5317–5326

    Article  CAS  Google Scholar 

  • Zwerger M, Herrmann H, Gaines P, Olins AL, Olins DE (2008) Granulocytic nuclear differentiation of Lamin B receptor-deficient mouse EPRO cells. Exp Hematol 36:977–987

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, S., Bhattacharyya, M., Sengupta, K. (2018). Changes in the Nuclear Envelope in Laminopathies. In: Chattopadhyay, K., Basu, S. (eds) Biochemical and Biophysical Roles of Cell Surface Molecules. Advances in Experimental Medicine and Biology, vol 1112. Springer, Singapore. https://doi.org/10.1007/978-981-13-3065-0_3

Download citation

Publish with us

Policies and ethics