Skip to main content

Hypophosphatasia

  • Chapter
  • First Online:

Abstract

During the patient’s fetal phase, hydramnios was present, and bone abnormality was detected. The male infant was born transvaginally at the gestational age of 41 weeks and 2 days. Respiratory impairment became worse soon after birth; therefore, mechanical ventilation was performed. Low titers of serum alkaline phosphatase (ALP) (9 IU/L; reference range, 530–1610 IU/L) and bone ALP (BAP) (0 μg/L; reference range, 3.7–20.4 μg/L) were found, and urinary phosphoethanolamine (PEA) (1195 μmol/L; normal range is non-detectable), one substrate of ALP, was detected. Hypomineralization, thin and short forearm bone, fluttering in the metaphyseal regions, and narrow thorax were revealed by X-ray (Fig. 9.1a, b). These indicated that the patient had developed perinatal lethal hypophosphatasia (HPP). Refractory convulsion developed 5 days after birth, which ceased with the administration of pyridoxine. Tracheobronchomalacia frequently appeared from 6 months after birth. To perform definite diagnosis, we extracted DNA from white blood cells and examined the gene analysis of the liver/bone/kidney alkaline phosphatase (ALPL) gene, the causative gene of HPP. As a result, the patient harbored a homozygous mutation in c.1559delT of the ALPL gene (Fig. 9.2) (Taketani T et al. 2015).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdallah BM, Kassem M (2009) The use of mesenchymal (skeletal) stem cells for treatment of degenerative diseases: current status and future perspectives. J Cell Physiol 218:9–12

    Article  CAS  Google Scholar 

  • Cahill RA, Wenkert D, Perlman SA, Steele A, Coburn SP, McAlister WH, Mumm S, Whyte MP (2007) Infantile hypophosphatasia: transplantation therapy trial using bone fragments and cultured osteoblasts. J Clin Endocrinol Metab 92:2923–2930

    Article  CAS  Google Scholar 

  • Iijima O, Miyake K, Watanabe A, Miyake N, Igarashi T, Kanokoda C, Nakamura-Takahashi A, Kinoshita H, Noguchi T, Abe S, Narisawa S, Millán JL, Okada T, Shimada T (2015) Prevention of lethal murine Hypophosphatasia by neonatal ex vivo gene therapy using Lentivirally transduced bone marrow cells. Hum Gene Ther 26:801–812

    Article  CAS  Google Scholar 

  • Matsumoto T, Miyake K, Yamamoto S, Orimo H, Miyake N, Odagaki Y, Adachi K, Iijima O, Narisawa S, Millán JL, Fukunaga Y, Shimada T (2011) Rescue of severe infantile hypophosphatasia mice by AAV-mediated sustained expression of soluble alkaline phosphatase. Hum Gene Ther 22:1355–1364

    Article  CAS  Google Scholar 

  • Michigami T, Uchihashi T, Suzuki A, Tachikawa K, Nakajima S, Ozono K (2005) Common mutations F310L and T1559del in the tissue-nonspecific alkaline phosphatase gene are related to distinct phenotypes in Japanese patients with hypophosphatasia. Eur J Pediatr 164:277–282

    Article  CAS  Google Scholar 

  • Millán JL, Narisawa S, Lemire I, Loisel TP, Boileau G, Leonard P, Gramatikova S, Terkeltaub R, Camacho NP, McKee MD, Crine P, Whyte MP (2008) Enzyme replacement therapy for murine hypophosphatasia. J Bone Miner Res 23:777–787

    Article  Google Scholar 

  • Mornet E, Nunes ME (2007 Nov 20 [updated 2016 Feb 4]) Hypophosphatasia. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH., Bird TD., Ledbetter N, Mefford HC, Smith RJH, Stephens K (eds) GeneReviews® [Internet]. University of Washington, Seattle, Seattle: 1993–2017

    Google Scholar 

  • Mornet E, Yvard A, Taillandier A, Fauvert D, Simon-Bouy B (2011) A molecular-based estimation of the prevalence of hypophosphatasia in the European population. Ann Hum Genet 75:439–445

    Article  Google Scholar 

  • Nishioka T, Tomatsu S, Gutierrez MA, Miyamoto K, Trandafirescu GG, Lopez PL, Grubb JH, Kanai R, Kobayashi H, Yamaguchi S, Gottesman GS, Cahill R, Noguchi A, Sly WS (2006) Enhancement of drug delivery to bone: characterization of human tissue-nonspecific alkaline phosphatase tagged with an acidic oligopeptide. Mol Genet Metab 88:244–255

    Article  CAS  Google Scholar 

  • Sekido T, Sakura N, Higashi Y, Miya K, Nitta Y, Nomura M, Sawanishi H, Morito K, Masamune Y, Kasugai S, Yokogawa K, Miyamoto K (2001) Novel drug delivery system to bone using acidic oligopeptide: pharmacokinetic characteristics and pharmacological potential. J Drug Target 9:111–121

    Article  CAS  Google Scholar 

  • Tadokoro M, Kanai R, Taketani T, Uchio Y, Yamaguchi S, Ohgushi H (2009) New bone formation by allogeneic mesenchymal stem cell transplantation in a patient with perinatal hypophosphatasia. J Pediatr 154:924–930

    Article  CAS  Google Scholar 

  • Taketani T (2015) Neurological symptoms of Hypophosphatasia. Subcell Biochem 76:309–322

    Article  CAS  Google Scholar 

  • Taketani T, Onigata K, Kobayashi H, Mushimoto Y, Fukuda S, Yamaguchi S (2014) Clinical and genetic aspects of hypophosphatasia in Japanese patients. Arch Dis Child 99:211–215

    Article  Google Scholar 

  • Taketani T, Oyama C, Mihara A, Tanabe Y, Abe M, Hirade T, Yamamoto S, Bo R, Kanai R, Tadenuma T, Michibata Y, Yamamoto S, Hattori M, Katsube Y, Ohnishi H, Sasao M, Oda Y, Hattori K, Yuba S, Ohgushi H, Yamaguchi S (2015) Ex vivo expanded allogeneic mesenchymal stem cells with bone marrow transplantation improved osteogenesis in infants with severe Hypophosphatasia. Cell Transplant 24:1931–1943

    Article  Google Scholar 

  • Watanabe A, Karasugi T, Sawai H, Naing BT, Ikegawa S, Orimo H, Shimada T (2011) Prevalence of c.1559delT in ALPL, a common mutation resulting in the perinatal (lethal) form of hypophosphatasia in Japanese and effects of the mutation on heterozygous carriers. J Hum Genet 56:166–168

    Article  CAS  Google Scholar 

  • Whyte MP (2016) Hypophosphatasia - aetiology, nosology, pathogenesis, diagnosis and treatment. Nat Rev Endocrinol 12:233–246

    Article  CAS  Google Scholar 

  • Whyte MP (2017) Hypophosphatasia: enzyme replacement therapy brings new opportunities and new challenges. J Bone Miner Res 32:667–675

    Article  CAS  Google Scholar 

  • Whyte MP, Kurtzberg J, McAlister WH, Mumm S, Podgornik MN, Coburn SP, Ryan LM, Miller CR, Gottesman GS, Smith AK, Douville J, Waters-Pick B, Armstrong RD, Martin PL (2003) Marrow cell transplantation for infantile hypophosphatasia. J Bone Miner Res 18:624–636

    Article  Google Scholar 

  • Whyte MP, Greenberg CR, Salman NJ, Bober MB, McAlister WH, Van Sickle B, Wenkert D, Edgar TS, Bauer ML, Hamdan M, Simmons JH, Bishop N, Lutz RE, McGinn M, Craig S, Moore JN, Taylor JW, Cleveland RH, Cranley WR, Lim R, Thacher TD, Mayhew JE, Downs M, Millan JL, Skrinar A, Crine P, Landy H (2012) Enzyme replacement therapy in life-threatening hypophosphatasia. N Engl J Med 366:904–913

    Article  CAS  Google Scholar 

  • Whyte MP, Madson KL, Phillips D, Reeves A, McAlister WH, Yakimoski A, Mack K, Hamilton K, Kagan K, Melian A, Thompson D, Moseley S, Odrljin T, Greenberg CR (2016) Asfotase alfa therapy for children with hypophosphatasia. JCI Insight 1:e85971 1–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Taketani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taketani, T., Oyama, C., Oda, Y., Murphy, L. (2019). Hypophosphatasia. In: Oohashi, T., Tsukahara, H., Ramirez, F., Barber, C., Otsuka, F. (eds) Human Pathobiochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-13-2977-7_9

Download citation

Publish with us

Policies and ethics