Skip to main content

Liquid Silicon Family Materials(2): SiC

SiC-Ink and SiC Film from Liquid Si

  • Chapter
  • First Online:
Nanoliquid Processes for Electronic Devices
  • 256 Accesses

Abstract

As the second part of liquid silicon family materials, we introduce SiC of which ink (precursor solution) can also be made from CPS. Amorphous silicon carbide (a-SiC) is an advanced material with high thermal conductivity, good chemical stability, and high mechanical strength. Many researchers have fabricated a-SiC by the thermal decomposition of polycarbosilane which is converted into a-SiC by heating [1]. The pyrolysis products of various other polysilanes, including poly(methylsilane), poly(silylenemethylene), and poly(silastyrene), have been investigated as starting materials for polycarbosilane [2–4]. Since most of these previous studies have focused on structural and mechanical properties of polymers and the resultant SiC [5], there has been very few works focusing to develop a semiconducting SiC by thermal decomposition of polycarbosilane.

Here we introduce deposition of amorphous silicon carbide (a-SiC) films via solution process using a polymeric precursor solution consisting of polydihydrosilane with pendant hexyl groups (PSH). Unlike conventional polymeric precursors, this polymer neither requires catalysts nor oxidation for its synthesis and cross-linkage, resulting in sufficient purity used for semiconducting a-SiC.

In Sect. 7.1, polymer-to-ceramic conversion is systematically investigated under various pyrolysis temperatures. The polymer primarily undergoes cross-linking at temperatures above 150 °C with increasing polymer fraction; this cross-linking is followed by incorporation of carbon atoms into an amorphous network at 380 °C. The incorporated carbon atoms in the film are predominantly in the sp3-bonding state with almost no amorphous graphite-like sp2 C-C clusters, leading to marked changes in the film’s properties.

In Sect. 7.2, we investigated the correlation of Si/C stoichiometry between the polymeric precursor solution and the resultant a-SiC film. The structural, optical, and electrical properties of the films with various carbon contents were also explored. The results suggested that the excess carbon that did not participate in Si–C configurations was decomposed and was evaporated during polymer-to-SiC conversion. Consequently, the upper limit of the carbon in the resultant a-SiC film was less than 50 at%, i.e., silicon-rich a-SiC.

In Sect. 7.3, we introduce phosphorus-doped a-SiC films (n-type a-SiC), using a polymeric precursor synthesized from a mixture of cyclopentasilane, white phosphorus, and 1-hexyne. The effect of carbon and phosphorus concentrations on the structural, optical, and electrical properties of a-SiC films was studied. The valence and conduction states of these films were determined directly through the combination of inverse photoemission spectroscopy and photoelectron yield spectroscopy.

In Sect. 7.4, we present p-type a-SiC films prepared using a LVD (liquid vapor deposition) method which is described in Chap. 5. In this time, we used a simple chamber with a vaporized silicon ink consisting of cyclopentasilane, cyclohexene, and decaborane. The incorporation of carbon into the silicon network was induced by the addition of cyclohexene to the silicon ink.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Yajima, J. Hayashi, M. Omori, Chem. Lett. 4, 931 (1975)

    Article  Google Scholar 

  2. Z.-F. Zhang, F. Babonneau, R.M. Laine, Y. Mu, J.F. Harrod, J.A. Rahn, J. Am. Ceram. Soc. 74, 670 (1991)

    Article  CAS  Google Scholar 

  3. Q. Liu, H.J. Wu, R. Lewis, G.E. Maciel, L.V. Interrante, Chem. Mater. 11, 2038 (1999)

    Article  CAS  Google Scholar 

  4. R. West, L.D. David, P.I. Djurovich, H. Yu, R. RSinclair, Am. Ceram. Soc. Bull. 62, 899 (1983)

    CAS  Google Scholar 

  5. Y. Hasegawa, K. Okamura, J. Mater. Sci. 18, 3633 (1983)

    Article  CAS  Google Scholar 

  6. T.R. Dietrich, S. Chiussi, M. Marek, A. Roth, F.J. Comes, J. Phys. Chem. 95, 9302 (1991)

    Article  CAS  Google Scholar 

  7. P.P. Gaspar, Reactive Intermediates, vol 1 (Wiley, New York, 1978)

    Google Scholar 

  8. Y.N. Tang, Reactive Intermediates, vol 2 (Plenum, New York, 1982)

    Google Scholar 

  9. F. Anwari, M.S. Gordon, Isr. J. Chem. 23, 129 (1983)

    Article  CAS  Google Scholar 

  10. G. Inoue, M. Suzuki, Chem. Phys. Lett. 122, 361 (1985)

    Article  CAS  Google Scholar 

  11. J.O. Chu, D.B. Beach, J.M. Jasinski, J. Phys. Chem. 91, 5340 (1987)

    Article  CAS  Google Scholar 

  12. T. Masuda, Y. Matsuki, T. Shimoda, Polymer 53, 2973 (2012)

    Article  CAS  Google Scholar 

  13. M.H. Brodsky, M. Cardona, J.J. Cuomo, Phys. Rev. B 16, 3556 (1977)

    Article  CAS  Google Scholar 

  14. H. Murata, H. Matsuura, K. Ohno, T. Sato, J. Mol. Struc. 52, 1 (1979)

    Article  CAS  Google Scholar 

  15. S. Liu, S. Gangopadhyay, G. Sreenivas, S.S. Ang, H.A. Naseem, Phys. Rev. B 55, 13020 (1997)

    Article  CAS  Google Scholar 

  16. T. Masuda, Y. Matsuki, T. Shimoda, Thin Solid Films 520, 6603 (2012)

    Article  CAS  Google Scholar 

  17. M.L. Huggins, J. Am. Chem. Soc. 75, 4123 (1953)

    Article  CAS  Google Scholar 

  18. S. Yajima, Y. Hasegawa, J. Hayashi, M. Iimura, J. Mater. Sci. 13, 2569 (1978)

    CAS  Google Scholar 

  19. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    Article  CAS  Google Scholar 

  20. J. Robertson, E.P. O’Reilly, Phys. Rev. B 35, 2946 (1987)

    Article  CAS  Google Scholar 

  21. J.I. Pankove, Semiconductors and Semimetals, “Hydrogeated Amorphous Silicon” Part A (Academic Press, Orlando/London, 1984)

    Google Scholar 

  22. H. Wieder, M. Cardona, C.R. Guarnieri, Phys. Stat. Solidi (b) 92, 99 (1979)

    Article  CAS  Google Scholar 

  23. Y. Katayama, K. Usami, T. Shimada, Philos. Mag. B 43, 283 (1981)

    Article  CAS  Google Scholar 

  24. Y. Catherine, G. Turban, Thin Solid Films 70, 101 (1980)

    Article  CAS  Google Scholar 

  25. Y. Tawada, K. Tsuge, M. Kondo, H. Okamoto, Y. Hamakawa, J. Appl. Phys. 53, 5273 (1982)

    Article  CAS  Google Scholar 

  26. Y.H. Wang, J. Lin, C.H.A. Huan, Mater. Sci. Engineer. B 95, 43 (2002)

    Article  Google Scholar 

  27. A. Chehaidar, R. Carles, A. Zwick, C. Meunier, B. Cros, J. Durand, J. Non-Cryst. Solids 169, 37 (1994)

    Article  CAS  Google Scholar 

  28. F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126 (1970)

    Article  CAS  Google Scholar 

  29. D.M. Bhusari, S.T. Kshirsagar, J. Appl. Phys. 73, 1743 (1993)

    Article  CAS  Google Scholar 

  30. H. Matsumura, T. Uesugi, H. Ihara, Jpn. J. Appl. Phys. 24, L24 (1985)

    Article  Google Scholar 

  31. T. Masuda, Z. Shen, H. Takagishi, K. Ohdaira, T. Shimoda, Jpn. J. Appl. Phys. 53, 031304 (2014)

    Article  Google Scholar 

  32. A. Sugiyama, T. Shimoda, D.H. Chi, Mol. Phys. 108, 1649 (2010)

    Article  CAS  Google Scholar 

  33. G. Fritz, J. Grobe, D. Kummer, Carbosilanes, Vol. Volume 7 (Academic Press, 1965)

    Google Scholar 

  34. T. Masuda, A. Iwasaka, H. Takagishi, T. Shimoda, Thin Solid Films 612, 284 (2016)

    Article  CAS  Google Scholar 

  35. T. Masuda, A. Iwasaka, H. Takagishi, T. Shimoda, J. Mater. Chem. C 3, 12212 (2015)

    Article  CAS  Google Scholar 

  36. T. Friessnegg, M. Boudreau, P. Mascher, A. Knights, S. P. J., and W. Puff. J. Appl. Phys. 84, 786 (1998)

    Article  CAS  Google Scholar 

  37. A.A. Langford, M.L. Fleet, B.P. Nelson, W.A. Lanford, N. Maley, Phys. Rev. B 45, 13367 (1992)

    Article  CAS  Google Scholar 

  38. A. Tabata, Y. Kuno, Y. Suzuoki, T. Mizutani, J. Non-Cryst, Solids 164–166. Part 2, 1043 (1993)

    Google Scholar 

  39. J. Schäfer, J. Ristein, S. Miyazaki, L. Ley, Appl. Surface Sci. 123, 11 (1998)

    Article  Google Scholar 

  40. N.F. Mott, E.A. Davis, Electronic processes in noncrystalline materials (Oxford University Press, Oxford, 1979)

    Google Scholar 

  41. R.S. Sussmann, R. Ogden, Philos. Mag. B 44, 137 (1981)

    Article  CAS  Google Scholar 

  42. S. Knief, W. von Niessen, J. Non-Cryst. Solids 255, 242 (1999)

    Article  CAS  Google Scholar 

  43. T. Murakami, T. Masuda, S. Inoue, H. Yano, N. Iwamuro, T. Shimoda, AIP Adv. 6, 055021 (2016)

    Article  Google Scholar 

  44. R.J. Loveland, W.E. Spear, A. Al-Sharbaty, J. Non-Cryst. Solids 13, 55 (1973)

    Article  CAS  Google Scholar 

  45. I. Sakata, Y. Hayashi, M. Yamanaka, H. Karasawa, J. Appl. Phys. 52, 4334 (1981)

    Article  CAS  Google Scholar 

  46. W. Beyer, H. Wagner, H. Mell, MRS Proc. 49, 189 (2011)

    Article  Google Scholar 

  47. A.H. Mahan, P. Raboisson, R. Tsu, Appl. Phys. Lett. 50, 335 (1987)

    Article  CAS  Google Scholar 

  48. T. Masuda, N. Sotani, H. Hamada, Y. Matsuki, T. Shimoda, Appl. Phys. Lett. 100, 253908 (2012)

    Article  Google Scholar 

  49. T. Masuda, A. Iwasaka, H. Takagishi, T. Shimoda, G. Soraru, J. Am. Ceram. Soc. 99, 1651 (2016)

    Article  CAS  Google Scholar 

  50. N. Tokitoh, W. Ando, Reactive Intermediates Chemistry (Wiley, Hoboken, 2005)

    Google Scholar 

  51. F. Demichelis, C.F. Pirri, E. Tresso, J. Appl. Phys. 72, 1327 (1992)

    Article  CAS  Google Scholar 

  52. R.A. Street, Phys. Rev. Lett. 49, 1187 (1982)

    Article  CAS  Google Scholar 

  53. D. Adler, Phys. Rev. Lett. 41, 1755 (1978)

    Article  CAS  Google Scholar 

  54. W.B. Jackson, N.M. Amer, Phys. Rev. B 25, 5559 (1982)

    Article  CAS  Google Scholar 

  55. W. Meyer, H. Neldel, Z. Tech. Phys. (Leipzig) 12, 588 (1937)

    Google Scholar 

  56. V. Kirbs, T. Drusedau, H. Fiedler, J. Phys. 2, 7473 (1990)

    CAS  Google Scholar 

  57. R. Widenhorn, A. Rest, E. Bodegom, J. Appl. Phys. 91, 6524 (2002)

    Article  CAS  Google Scholar 

  58. N.F. Mott, J. Non-Cryst. Solids 1, 1 (1968)

    Article  CAS  Google Scholar 

  59. M.J.G. Lee, Phys. Rev. 187, 901 (1969)

    Article  CAS  Google Scholar 

  60. Y. Tawada, M. Kondo, H. Okamoto, Y. Hamakawa, Sol. Energy Mater. 6, 299 (1982)

    Article  CAS  Google Scholar 

  61. J.D. Carpenter, B.S. Ault, J. Phys. Chem. 95, 3502 (1991)

    Article  CAS  Google Scholar 

  62. F.J. Himpsel, T. Fauster, J. Vac. Sci. Technol. A 2, 815 (1984)

    Article  CAS  Google Scholar 

  63. M. De Seta, S.L. Wang, F. Fumi, F. Evangelisti, Phys. Rev. B 47, 7041 (1993)

    Article  Google Scholar 

  64. E.A. Schiff, S. Hegedus, X. Deng, Handbook of Photovoltaic Science and Engineering (Wiley, Chichester, 2003)

    Google Scholar 

  65. T.M. Brown, C. Bittencourt, M. Sebastiani, F. Evangelisti, Phys. Rev. B 55, 9904 (1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimoda, T. (2019). Liquid Silicon Family Materials(2): SiC. In: Nanoliquid Processes for Electronic Devices. Springer, Singapore. https://doi.org/10.1007/978-981-13-2953-1_7

Download citation

Publish with us

Policies and ethics