Skip to main content

Fracturing Fluids and Fracturing Fluid Additives

  • Chapter
  • First Online:
  • 901 Accesses

Abstract

Fracturing is one of the measures to increase production and injection by cracking the formation with high pressure. The cracks are then supported by proppants to reduce the flow resistance. The major contents of this chapter are fracturing fluids and fracturing fluid additives. The classification, compositions, characteristics, fracturing principle, and application scope of various fracturing fluids are introduced. The classification and function mechanism of various fracturing fluid additives including demulsifier, clay stabilizer, cleanup additive, wettability reversal agent, proppant, breaker, friction reducer, and filtrate reducer are also talked about in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Almond SW, Harris PC (1984) Fracturing method for stimulation of wells utilizing carbon dioxide based fluids. US Patent 4,480,696, 6 Nov 1984

    Google Scholar 

  • Blair CC, Chang KT, Treybig DS et al (2003) Use of dispersion polymers as friction reducers in aqueous fracturing fluids. WO Patent 085,232,A1, 16 Oct 2003

    Google Scholar 

  • Chatterji J, Crook R, King L (2003) Foamed fracturing fluids, additives and methods of fracturing subterranean zones. US Patent 0,004,067, 2 Jan 2003

    Google Scholar 

  • Colaco A, Marchand JP, Li F et al (2006) Viscoelastic surfactant fluids having enhanced shear recovery, rheology and stability performance. US 2006/0105919A1, 18 May 2006

    Google Scholar 

  • Dahayanake MS, Yang J, Niu JHY et al (2007) Viscoelastic surfactant fluids and related methods of use. US Patent 0,249,505,A1, 25 Oct 2007

    Google Scholar 

  • Dantas TNC, Santanna VC, Neto AAD et al (2006) Methodology to break test for surfactant-based fracturing gel. J Petrol Sci Eng 50(3–4):293–298

    Google Scholar 

  • Dawson JC, Le HV (2005) Fracturing fluids and methods of making and using same. US Patent 6,844,296,B2, 18 Jan 2005

    Google Scholar 

  • Dawson J, Kesavan S, Le HV (2004) Breaker system for fracturing fluids used in fracturing oil bearing formations. US Patent 6,767,868, 27 July 2004

    Google Scholar 

  • Dobson JW Jr, Hayden SL, Hinojosa BE (2003) Crosslinked polymer fluids and crosslinking concentrates therefor. EP Patent 1,331,358,A1, 30 July 2003

    Google Scholar 

  • Elgassier MM, Stolyarov SM (2008) Reasons for oil-based hydraulic fracturing in western Siberia. SPE 112092

    Google Scholar 

  • Ely JW (1981) Methods of water flooding and fracturing using clean, non-damaging fracturing fluids. US Patent 4,265,311, 5 May 1981

    Google Scholar 

  • Funkhouser GP, Norman LR (2003) Synthetic polymer fracturing fluid for high-temperature applications. SPE 80236

    Google Scholar 

  • Gabrysch A, Chesser BG (1998) Use of sized salts as bridging agent for oil based fluids. EP 817818, 14 Jan 1998

    Google Scholar 

  • Gawiezel KE, Elbel JL (1992) A new system for controlling the crosslinking rate of borate fracturing fluid. SPE Prod Eng 7(3):275–279

    Google Scholar 

  • Githens CJ, Harrison WG (1994) Method for using soap as a soluble fluid loss additive in the hydraulic fracturing treatment of oil and gas wells. US Patent 5,301,751, 12 Mar 1994

    Google Scholar 

  • Harris PC (1999) Foamed fracturing fluid. US Patent 5,990,052, 23 Nov 1999

    Google Scholar 

  • Hughes T, Jones T, Tustin G (2001) Viscoelastic surfactant based gelling composition for wellbore service fluids. US Patent 6,232,274, 15 May 2001

    Google Scholar 

  • Jennings AR Jr (1996) Fracturing fluids—Then and now. JPT 48(7):604–610

    Article  CAS  Google Scholar 

  • Johnston RL, Lee YN (1998) Nonaqueous drag reducing suspensions. WO Patent 16,586, 23 Mar 1998

    Google Scholar 

  • Joyce VA, Navarrete R, Constien VG et al (1999) Fluid loss control. US Patent 5,929,002, 27 July 1999

    Google Scholar 

  • Kakadjian S, Rauseo O, Marquez R et al (2001) Crosslinked emulsion to be used as fracturing fluids. SPE 65038

    Google Scholar 

  • King GE (1980) Low fluid loss foams. US Patent 4,217,231, 12 Aug 1980

    Google Scholar 

  • Lee J, Nelson E (2004) Viscosity reduction of viscoelastic surfactant based fluids. WO Patent 007,904,A1, 22 Jan 2004

    Google Scholar 

  • Liu X, Yi M, Zhao J et al (2001) Viscoelastic surfactant based fracturing fluids. Oilfield Chem 18(3):273–277

    Google Scholar 

  • Maberry LJ, Mcconnell SB, Hinkel JJ (1997) New complexation chemistry provides improved continuous mix gelled oil. SPE 37227

    Google Scholar 

  • Maberry LJ, Mcconnell SB, Tanner KV et al (1998) Chemistry and field application of an improved continuous-mix gelled oil. SPE Prod Facil 13(4):236–242

    Google Scholar 

  • Malone MR, Nelson SG, Jackson R (2000) Enzyme breaker technology increases production, Grayburg-Jackson field, southeast new Mexico: a case history. SPE 59709

    Google Scholar 

  • Mathew S, Roger JC, Nelson EB et al (1997) Polymer free fluid for hydraulic fracturing. SPE 38622, pp 554–559

    Google Scholar 

  • Mitchell TO, Parris MD (2001) High temperature hydraulic fracturing fluid. US Patent 6,277,295,B1, 8 May 2001

    Google Scholar 

  • Moorhouse R, Cottrell IW (1997) Carboxyalkyl substituted polygalactomannan fracturing fluids. US Patent 5,697,444, 16 Dec 1997

    Google Scholar 

  • Newhouse DP, Lai QJ (2000) Use of oil-based gel-breaker/inhibitor compounds with polymer gels in well treatments. US Patent 6,133,204, 17 Oct 2000

    Google Scholar 

  • Nimerik KH (1997) Borate crosslinked fracturing fluid and method. US Patent 5,681,796, 28 Oct 1997

    Google Scholar 

  • Qu Q, Nelson EB, Willberg DM, et al (2002) Compositions containing aqueous viscosifying surfactants and methods for applying such compositions in subterranean formations. US Patent 6,435,277, 20 Aug 2002

    Google Scholar 

  • Rae P, Di Lullo G (1996) Fracturing fluid and breaker systems—a review of the state-of-the-art. SPE 37359

    Google Scholar 

  • Raynolds S, Fournier LB (1984) Hydrocarbon foams. US Patent 4,432,882, 21 Feb 1984

    Google Scholar 

  • Rickards AR, Brannon HD, Wood WD et al (2006) High strength ultralight weight proppant lends new dimensions to hydraulic fracturing applications. SPE Prod Oper 21(2):212–221

    Google Scholar 

  • Shah SN, Kamel A, Zhou Y (2006) Drag reduction characteristics in straight and coiled tubing—an experimental study. J Petrol Sci Eng 53(3–4):179–188

    Article  CAS  Google Scholar 

  • Sierra L, Dalrymple ED, Eoff LS et al (2005) Method useful for controlling fluid loss in subterranean treatments. US Patent 0,199,396,A1, 15 Sept 2005

    Google Scholar 

  • Smith KW, Persinski LJ (1998) Hydrocarbon gels useful in formation fracturing. EP Patent 817,819, 14 Jan 1998

    Google Scholar 

  • Smith KW, Persinski LJ (1995) Hydrocarbon gels useful in formation fracturing. US Patent 5,417,287, 23 May 1995

    Google Scholar 

  • Syrinek AR, Huddleleston DA (1988) Hydrocarbon gellant. US Patent 4,781,845, 1 Nov 1988

    Google Scholar 

  • Tackett JE Jr (1992) In situ reversible crosslinked polymer gel used in hydrocarbon recovery applications. US Patent 5,082,056, 21 Jan 1992

    Google Scholar 

  • Terracina JM, Mccabe MA, Shuchart CE et al (1999) Novel oxidizing breaker for high-temperature fracturing. SPE Prod Facil 14(2):144–146

    Article  Google Scholar 

  • Vezza M, Martin M, Thompson JE et al (2001) Morrow production enhanced by new, foamed, oil-based gel flacturing fluid technology. SPE 67209

    Google Scholar 

  • Westland JA, Lenk DA, Penny GS (1993) Rheological characteristics of reticulated bacterial cellulose as a performance additive to fracturing and drilling fluids. SPE 25204

    Google Scholar 

  • Willberg D, Nagl M (2004) Method for preparing improved high temperature fracturing fluid. US Patent 6,820,694,B2, 23 Nov 2004

    Google Scholar 

  • Yang J (2002) Viscoelastic wormlike micelles and their applications. Curr Opin Colloid Interface Sci 7(5–6):276–281

    Article  CAS  Google Scholar 

  • Zhao F, Wang J, Sun Y (1987) Synergism of viscosity in component systems. J East China Petrol Inst 11(2):36–46

    Google Scholar 

  • Zhao F (1989) Water-base titanium gel fracturing fluid. China Patent 85,105,346.7, 18 Oct 1989

    Google Scholar 

  • Zhou J, Zhu W, Lu Y et al (2004) Studies and uses of carbon dioxide foamed hydrofracturing fluid. Oilfield Chem 21(4):316–319

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caili Dai .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd. and China University of Petroleum Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dai, C., Zhao, F. (2018). Fracturing Fluids and Fracturing Fluid Additives. In: Oilfield Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-13-2950-0_8

Download citation

Publish with us

Policies and ethics