Skip to main content

Element-Block Polymeric Materials Based on Cage Silsesquioxane Frameworks

  • Chapter
  • First Online:
New Polymeric Materials Based on Element-Blocks
  • 627 Accesses

Abstract

This chapter focuses on recent efforts to prepare single-component element-block materials based on cage silsesquioxane frameworks. Polyhedral octasilsesquioxanes (POSSs), denoted as (RSiO1.5)8 or labeled T8 cages, are used here as the cage silsesquioxane frameworks. Thermoplastic optically transparent silsesquioxane materials derived from a single cage compound can be achieved by dumbbell- and star-shaped cage structures, allowing precise design of their structures for tuning properties. Incompletely condensed POSS exhibited lower crystallinity without loss of thermal stability in comparison with a completely condensed POSS. Difunctional POSS monomers, which were prepared by a selective corner-opening reaction and a subsequent corner-capping reaction, significantly reduce their crystallinity in comparison with those of monofunctionalized T8 cages. Several examples for polymerization of the difunctional POSS monomers are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Synthetic 6FDA–ODA copolyimide membranes for gas separation and pervaporation: functional groups and separation properties. Chem Rev 95:1409–1430

    Article  CAS  Google Scholar 

  2. Tanaka K, Chujo Y (2012) Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J Mater Chem 22:1733–1746

    Article  CAS  Google Scholar 

  3. Mikoshiba S, Hayase S (1999) Preparation of low density poly (methylsilsesquioxane)s for LSI interlayer dielectrics with low dielectric constant. Fabrication of angstrom size pores prepared by baking trifluoropropylsilyl copolymers. J Mater Chem 9:591–598

    Article  CAS  Google Scholar 

  4. Lee JH, Kim WC, Min SK, Ree HW, Yoon DY (2003) Synthesis of poly(methyl-co-trifluoropropyl) silsesquioxanes and their thin films for low dielectric application. Macromol Mater Eng 288:455–461

    Article  Google Scholar 

  5. Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110:2081–2173

    Article  CAS  Google Scholar 

  6. Laine RM (2005) Nanobuilding blocks based on the [OSiO1.5] (x = 6, 8, 10) octasilsesquioxanes. J Mater Chem 15:3725–3744

    Article  CAS  Google Scholar 

  7. Hasegawa I, Ino K, Ohnishi H (2003) An improved procedure for syntheses of silyl derivatives of the cubeoctameric silicate anion. Appl Organomet Chem 17:287–290

    Article  CAS  Google Scholar 

  8. Choi J, Yee AF, Laine RM (2003) Organic/inorganic hybrid composites from cubic silsesquioxanes. Epoxy resins of octa(dimethylsiloxyethylcyclohexylepoxide) silsesquioxane. Macromolecules 36:5666–5682

    Article  CAS  Google Scholar 

  9. Sasi kumar R, Ariraman M, Alagar M (2014) Design of lamellar structured POSS/BPZ polybenzoxazine nanocomposites as a novel class of ultra low–k dielectric materials. RSC Adv 4:19127–19136

    Article  CAS  Google Scholar 

  10. Kim KM, Chujo Y (2001) Liquid–crystalline organic-inorganic hybrid polymers with functionalized silsesquioxanes. J Polym Sci A Polym Chem 39:4035–4043

    Article  CAS  Google Scholar 

  11. Mitsuishi M, Zhao F, Kim Y, Watanabe A, Miyashita T (2008) Preparation of ultrathin silsesquioxane nanofilms via polymer langmuir−Blodgett films. Chem Mater 20:4310–4316

    Article  CAS  Google Scholar 

  12. Wahab MA, Mya KY, He CO (2008) Synthesis, morphology, and properties of hydroxyl terminated-POSS/polyimide low–k nanocomposite films. J Polym Sci A Polym Chem 46:5887–5896

    Article  Google Scholar 

  13. Tanaka K, Adachi S, Chujo Y (2009) Structure–property relationship of octa–substituted POSS in thermal and mechanical reinforcements of conventional polymers. J Polym Sci A Polym Chem 47:5690–5697

    Article  CAS  Google Scholar 

  14. Choi J, Yee AF, Laine RM (2004) Toughening of cubic silsesquioxane epoxy nanocomposites using core−shell rubber particles: a three–component hybrid system. Macromolecules 37:3267–3276

    Article  CAS  Google Scholar 

  15. Zhang C, Babonneau F, Bonhomme C, Laine RM, Soles CL, Hristov HA, Yee AL (1998) Highly porous polyhedral silsesquioxane polymers. Synthesis and characterization. J Am Chem Soc 120:8380–8391

    Article  CAS  Google Scholar 

  16. Lin H, Qu J, Zhang Z, Dong J, Zou H (2013) Ring-opening polymerization reaction of polyhedral oligomeric silsesquioxanes (POSSs) for preparation of well–controlled 3D skeletal hybrid monoliths. Chem Commun 49:231–233

    Article  CAS  Google Scholar 

  17. Jeon JH, Tanaka K, Chujo Y (2014) Light-driven artificial enzymes for selective oxidation of guanosine triphosphate using water–soluble POSS network polymers. Org Biomol Chem 12:6500–6506

    Article  CAS  Google Scholar 

  18. Jeon JH, Kakuta T, Tanaka K, Chujo Y (2015) Facile design of organic–inorganic hybrid gels for molecular recognition of nucleoside triphosphates. Bioorg Med Chem Lett 25:2050–2055

    Article  CAS  Google Scholar 

  19. Kakuta T, Tanaka K, Chujo Y (2015) Synthesis of emissive water–soluble network polymers based on polyhedral oligomeric silsesquioxane and their application as optical sensors for discriminating the particle size. J Mater Chem C 3:12539–12545

    Article  CAS  Google Scholar 

  20. Chujo Y, Tanaka K (2015) New polymeric materials based on element–blocks. Bull Chem Soc Jpn 86:633–643

    Article  Google Scholar 

  21. Araki H, Naka K (2011) Syntheses of dumbbell–shaped trifluoropropyl-substituted POSS derivatives linked by simple aliphatic chains and their optical transparent thermoplastic films. Macromolecules 44:6039–6045

    Article  CAS  Google Scholar 

  22. Araki H, Naka K (2012) Syntheses and properties of star– and dumbbell–shaped POSS derivatives containing isobutyl groups. Polym J 44:340–346

    Article  CAS  Google Scholar 

  23. Araki H, Naka K (2012) Syntheses and properties of dumbbell–shaped POSS derivatives linked by luminescent π –conjugated units. J Polym Sci A Polym Chem 50:4170–4181

    Article  CAS  Google Scholar 

  24. Yasumoto Y, Yamanaka T, Sakurai S, Imoto H, Naka K (2016) Design of low–crystalline and –density isobutyl–substituted caged silsesquioxane derivatives by star–shaped architectures linked with short aliphatic chains. Polym J 48:281–287

    Article  CAS  Google Scholar 

  25. Perrin FX, Viet Nguyen TB, Margaillan A (2011) Linear and branched alkyl substituted octakis(dimethylsiloxy)octasilsesquioxanes: WAXS and thermal properties. Eur Polym J 47:1370–1382

    Article  CAS  Google Scholar 

  26. Perrin FX, Panaitescu DM, Frone AN, Radovici C, Nicolae C (2013) The influence of alkyl substituents of POSS in polyethylene nanocomposites. Polymer 54:2347–2354

    Article  CAS  Google Scholar 

  27. Di Iulio C, Jones MD, Mahon MF, Apperley DC (2010) Zinc(II) silsesquioxane complexes and their application for the ring–opening polymerization of rac–Lactide. Inorg Chem 49:10232–10234

    Article  Google Scholar 

  28. Zhou J, Zhao Y, Yu K, Zhou X, Xie X (2011) Synthesis, thermal stability and photoresponsive behaviors of azobenzene–tethered polyhedral oligomeric silsesquioxanes. New J Chem 35:2781–2792

    Article  CAS  Google Scholar 

  29. Yamahiro M, Oikawa H, Yoshida K, Ito K, Yamamoto Y, Tanaka M, Ootake N, Watanabe K, Ohno K, Tsujii Y, Fukuda T (2004) PCT Int. Appl. WO 2004026883 A1 20040401

    Google Scholar 

  30. Ionescu G, van der Vlugt JI, Abbenhuis HCL, Vogt D (2005) Synthesis and applications of chiral phosphite ligands derived from incompletely condensed silsesquioxane backbones. Tetrahedron Asymmetry 16:3970–3975

    Article  CAS  Google Scholar 

  31. Bian Y, Mijović J (2009) Effect of side chain architecture on dielectric relaxation in polyhedral oligomeric silsesquioxane/polypropylene oxide nanocomposites. Polymer 50:1541–1547

    Article  CAS  Google Scholar 

  32. Miyasaka M, Fujiwara Y, Kudo H, Nishikubo T (2010) Synthesis of hyperbranched fluorinated polymers with controllable refractive indices. Polym J 42:799–803

    Article  CAS  Google Scholar 

  33. Imoto H, Nakao Y, Nishizawa N, Fujii S, Nakamura Y, Naka K (2015) Tripodal polyhedral oligomeric silsesquioxanes as novel class of three–dimensional emulsifiers. Polym J 47:609–615

    Article  CAS  Google Scholar 

  34. Brown JF, Vogt LH (1965) The polycondensation of cyclohexylsilanetriol. J Am Chem Soc 87:4313–4317

    Article  CAS  Google Scholar 

  35. Brown JF (1965) The polycondensation of phenylsilanetriol. J Am Chem Soc 87:4317–4324

    Article  CAS  Google Scholar 

  36. Feher FJ, Newman DA, Walzer JF (1989) Silsesquioxanes as models for silica surfaces. J Am Chem Soc 111:1741–1748

    Article  CAS  Google Scholar 

  37. Feher FJ, Budzichowski TA, Blanski RL, Weller KJ, Ziller JW (1991) Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes: [(c-C5H9)7Si7O9(OH)3], [(c-C7H13)7Si7O9(OH)3], and [(c-C7H13)6Si6O7(OH)4]. Organometallics 10:2526–2528

    Article  CAS  Google Scholar 

  38. Feher FJ, Terroba R, Ziller JW (1999) A new route to incompletely–condensed silsesquioxanes: base-mediated cleavage of polyhedral oligosilsesquioxanes. Chem Commun 69:2309–2310

    Article  Google Scholar 

  39. Yusa S, Ohno S, Honda T, Imoto H, Nakao Y, Naka K, Nakamura Y, Fujii S (2016) Synthesis of silsesquioxane–based element–block amphiphiles and their self–assembly in water. RSC Adv 6:73006–73012

    Article  CAS  Google Scholar 

  40. Lichtenhan JD, Otonari YA, Carr MJ (1995) Linear hybrid polymer building blocks: methacrylate–functionalized polyhedral oligomeric silsesquioxane monomers and polymers. Macromolecules 28:8435–8437

    Article  CAS  Google Scholar 

  41. Zheng L, Hong S, Cardoen G, Burgaz E, Gido SP, Coughlin EB (2004) Polymer nanocomposites through controlled self–assembly of cubic silsesquioxane scaffolds. Macromolecules 37:8606–8611

    Article  CAS  Google Scholar 

  42. Ahn B, Hirai T, Jin S, Rho Y, Kim KW, Kakimoto M, Gopalan P, Hayakawa T, Ree M (2010) Hierarchical structure in nanoscale thin films of a poly(styrene–b– methacrylate grafted with POSS) (PS214–b–PMAPOSS27). Macromolecules 43:10568–10581

    Article  CAS  Google Scholar 

  43. Wu J, Ge Q, Mather PT (2010) PEG−POSS multiblock polyurethanes: synthesis, characterization, and hydrogel formation. Macromolecules 43:7637–7649

    Article  CAS  Google Scholar 

  44. Lee J, Cho HJ, Jung BJ, Cho NS, Shim HK (2004) Stabilized blue luminescent polyfluorenes: introducing polyhedral oligomeric silsesquioxane. Macromolecules 37:8523–8529

    Article  CAS  Google Scholar 

  45. Pyun J, Matyjaszewski K (2000) The synthesis of hybrid polymers using atom transfer radical polymerization: homopolymers and block copolymers from polyhedral oligomeric silsesquioxane monomers. Macromolecules 33:217–220

    Article  CAS  Google Scholar 

  46. Escudé NC, Chen EYX (2009) Stereoregular methacrylate–POSS hybrid polymers: syntheses and nanostructured assemblies. Chem Mater 21:5743–5753

    Article  Google Scholar 

  47. Wright ME, Schorzman DA, Feher FJ, Jin RZ (2003) Synthesis and thermal curing of aryl–ethynyl–terminated coPOSS imide oligomers: new inorganic/organic hybrid resins. Chem Mater 15:264–268

    Article  CAS  Google Scholar 

  48. Wu S, Hayakawa T, Kikuchi R, Grunzinger SJ, Kakimoto M, Oikawa H (2007) Synthesis and characterization of semiaromatic polyimides containing POSS in main chain derived from double–decker–shaped silsesquioxane. Macromolecules 40:5698–5705

    Article  CAS  Google Scholar 

  49. Wu S, Hayakawa T, Kakimoto M, Oikawa H (2008) Synthesis and characterization of organosoluble aromatic polyimides containing POSS in main chain derived from double–decker–shaped silsesquioxane. Macromolecules 41:3481–3487

    Article  CAS  Google Scholar 

  50. Hoque MA, Kakihana Y, Shinke S, Kawakami Y (2009) Polysiloxanes with periodically distributed isomeric double–decker silsesquioxane in the main chain. Macromolecules 42:3309–3315

    Article  CAS  Google Scholar 

  51. Wang L, Zhang C, Zheng S (2011) Organic–inorganic poly(hydroxyether of bisphenol A) copolymers with double–decker silsesquioxane in the main chains. J Mater Chem 21:19344–19352

    Article  CAS  Google Scholar 

  52. Yoshimatsu M, Komori K, Ohnagamitsu Y, Sueyoshi N, Kawashima N, Chinen S, Murakami Y, Izumi J, Inoki D, Sakai K, Matsuo T, Watanabe K, Kunitake M (2012) Necklace-shaped dimethylsiloxane polymers bearing a polyhedral oligomeric silsesquioxane cage prepared by polycondensation and ring-opening polymerization. Chem Lett 41:622–624

    Article  CAS  Google Scholar 

  53. Lichtenhan JD, Vu NQ, Carter JA, Gilman JW, Feher FJ (1993) Silsesquioxane–siloxane copolymers from polyhedral silsesquioxanes. Macromolecules 26:2141–2142

    Article  CAS  Google Scholar 

  54. Raftopoulos KN, Jancia M, Aravopoulou D, Hebda E, Pielichowski K, Pissis P (2013) POSS along the hard segments of polyurethane. Phase separation and molecular dynamics. Macromolecules 46:7378–7386

    Article  CAS  Google Scholar 

  55. Asuncion MZ, Laine RM (2010) Fluoride rearrangement reactions of polyphenyl– and polyvinylsilsesquioxanes as a facile route to mixed functional phenyl, vinyl T10 and T12 silsesquioxanes. J Am Chem Soc 132:3723–3736

    Article  CAS  Google Scholar 

  56. Jung JH, Laine RM (2011) Polymers formed from the reaction of [NH2PhSiO1.5]x[PhSiO1.5]10–x and [NH2PhSiO1.5]x[PhSiO1.5]12–x mixtures (x = 2–4) with the Diglycidyl ether of Bisphenol A. Macromolecules 44:7263–7272

    Article  CAS  Google Scholar 

  57. Jung JH, Furgal JC, Clark S, Schwartz M, Chou K, Laine RM (2013) Beads on a Chain (BoC) polymers with model dendronized beads. Copolymerization of [(4-NH2C6H4SiO1.5)6(IPhSiO1.5)2] and [(4-CH3OC6H4SiO1.5)6(IPhSiO1.5)2] with 1,4-Diethynylbenzene (DEB) gives through–chain, extended 3–D conjugation in the excited state that is an average of the corresponding homopolymers. Macromolecules 46:7580–7590

    Article  CAS  Google Scholar 

  58. Furgal JC, Jung JH, Clark S, Richard M (2013) Beads on a Chain (BoC) phenylsilsesquioxane (SQ) polymers via F–catalyzed rearrangements and ADMET or reverse heck cross–coupling reactions: through chain, extended conjugation in 3-D with potential for dendronization. Macromolecules 46:7591–7604

    Article  CAS  Google Scholar 

  59. Tokunaga T, Koga S, Mizumo T, Ohshita J, Kaneko Y (2015) Facile preparation of a soluble polymer containing polyhedral oligomeric silsesquioxane units in its main chain. Polym Chem 6:3039–3045

    Article  CAS  Google Scholar 

  60. Maegawa T, Irie Y, Fueno H, Tanaka K, Naka K (2014) Synthesis and polymerization of a Para–disubstituted T8–caged hexaisobutyl–POSS monomer. Chem Lett 43:1532–1534

    Article  CAS  Google Scholar 

  61. Carniato F, Boccaleri E, Marchese L (2008) A versatile route to bifunctionalized silsesquioxane (POSS): synthesis and characterisation of Ticontaining aminopropylisobutyl–POSS. Dalton Trans 1:36–39

    Article  Google Scholar 

  62. Olivero F, Renò F, Carniato F, Rizzi M, Cannas M, Marchese L (2012) A novel luminescent bifunctional POSS as a molecular platform for biomedical applications. Dalton Trans 41:7467–7473

    Article  CAS  Google Scholar 

  63. Maegawa T, Irie Y, Imoto H, Fueno H, Naka K (2015) Para–bisvinylhexaisobutyl–substituted T8 caged monomer: synthesis and hydrosilylation polymerization. Polym Chem 6:7487–7632

    Article  Google Scholar 

  64. Maegawa T, Miyashita O, Irie Y, Imoto H, Naka K (2016) Synthesis and properties of polyimides containing hexaisobutyl–substituted T8 cages in their main chains. RSC Adv 6:31751–31757

    Article  CAS  Google Scholar 

  65. Bassindale AR, Liu Z, MacKinnon IA, Taylor PG, Yang Y, Light ME, Horton PN, Hursthouse MB (2003) A higher yielding route for T8 silsesquioxane cages and X–ray crystal structures of some novel spherosilicates. Dalton Trans 14:2945–2949

    Article  Google Scholar 

  66. Xiao X, Kong D, Qui X, Zhang W, Zhang F, Liu L, Liu Y, Zhang S, Hu Y, Leng J (2015) Shape–memory polymers with adjustable high glass transition temperatures. Macromolecules 48:3582–3589

    Article  CAS  Google Scholar 

  67. Xiao S, Huang RYM, Feng X (2007) Synthetic 6FDA–ODA copolyimide membranes for gas separation and pervaporation: functional groups and separation properties. Polymer 48:5355–5368

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kensuke Naka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naka, K. (2019). Element-Block Polymeric Materials Based on Cage Silsesquioxane Frameworks. In: Chujo, Y. (eds) New Polymeric Materials Based on Element-Blocks. Springer, Singapore. https://doi.org/10.1007/978-981-13-2889-3_5

Download citation

Publish with us

Policies and ethics