Skip to main content

Experimental Determination of Fluid Flow Parameters to Study Permeation Process Inside a Porous Channel

  • Conference paper
  • First Online:
Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018)

Abstract

Porous channels are actively used in the field of transpiration cooling and fuel cell applications. Therefore, it is important to study the fluid flow inside the porous channel and different factors affecting it. In this study, fluid flow analysis is performed using four different gases such as nitrogen, carbon dioxide, methane, and helium. The effects of different inlet flowrates and feed pressures are investigated on the fluid properties. It is found that the viscous sublayer thickness is not the only parameter which governs the permeation inside the porous stainless steel tube. There are also some more parameters which should be taken into account while studying the permeation in a porous tube in addition to the boundary layer. These parameters are the velocity of the main flow, Vz (i.e., axial flow), momentum in the main flow, Mz (i.e., in axial direction), momentum in radial direction, My, density, ρ, and viscosity, µ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Najmi, H., El-Tabach, E., Gascoin, N., Chetehouna, K., Lamoot, L.: Falempin, F: Fluid flow analysis to describe the permeation process along the length of the porous tube. Int. J. Hydrogen Energy 42, 25531–25543 (2017)

    Article  Google Scholar 

  2. Wang, M., Lawal, A., Stephenson, P., Sidders, J.: Ramshaw, C: Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem. Eng. Res. Des. 89, 1609–1624 (2011)

    Article  Google Scholar 

  3. Pangrle, B., Alexandrou, N., Dixon, G., Dibiasio, D.: An analysis of laminar fluid flow in porous tube and shell systems. Chem. Eng. Sci. 46, 2847–2855 (1991)

    Article  Google Scholar 

  4. Gascoin, N., Fau, G., Gillard, P., Kuhn, M., Bouchez, M., Steelant, J.: Comparison of two permeation test benches and of two determination methods for Darcy’s and Forchheimer’s permeabilities. J. Porous Media 15, 705–720 (2012)

    Article  Google Scholar 

  5. Gascoin, N.: High temperature and pressure reactive flows through porous media. Int. J. Multiph. Flow 37, 24–35 (2011)

    Article  Google Scholar 

  6. Najmi, H., El-Tabach, E., Chetehouna, K., Gascoin, N., Akridiss, S., Falempin, F.: Flow Configuration Influence on Darcian and Forchheimer Permeabilities Determination. Springer Lecture Notes Mech. Eng. ‘IDAD’, pp. 87–94 (2017)

    Google Scholar 

  7. Najmi, H., El-Tabach, E., Chetehouna, K., Gascoin, N., Falempin, F.: Effect of flow configuration on Darcian and Forchheimer permeabilities determination in a porous composite tube. Int. J. Hydrogen Energy 41, 316–323 (2015)

    Article  Google Scholar 

  8. Barreiro, M., Maroño, M., Sánchez, J.: Hydrogen permeation through a Pd-based membrane and RWGS conversion in H2/CO2, H2/N2/CO2 and H2/H2O/CO2 mixtures. Int. J. Hydrogen Energy 39, 4710–4716 (2014)

    Article  Google Scholar 

  9. Miyajima, K., Eda, T., Nair, B., Iwamoto, Y.: Organic–inorganic layered membrane for selective hydrogen permeation together with dehydration. J. Memb. Sci. 421, 124–130 (2012)

    Article  Google Scholar 

  10. Chen, W., Hsu, P.: Hydrogen permeation measurements of Pd and Pd-Cu membranes using dynamic pressure difference method. Int. J. Hydrogen Energy 36, 9355–9366 (2011)

    Article  Google Scholar 

  11. Shamsabadi, A., Kargari, A., Babaheidari, M., Laki, S., Ajami, H.: Role of critical concentration of PEI in NMP solutions on gas permeation characteristics of PEI gas. J. Ind. Eng. Chem. 19, 677–685 (2013)

    Article  Google Scholar 

  12. Chi, Y., Yen, P., Jeng, M., Ko, S., Lee, T.: Preparation of thin Pd membrane on porous stainless steel tubes modified by a two-step method. Int. J. Hydrogen Energy 35, 6303–6310 (2010)

    Article  Google Scholar 

  13. Chen, W., Chi, I.: Transient dynamic of hydrogen permeation through a palladium membrane. Int. J. Hydrogen Energy 34, 2440–2448 (2009)

    Article  Google Scholar 

  14. Najmi, H., El-Tabach, E., Gascoin, N., Chetehouna, K., Lamoot L., Falempin, F.: Permselectivity bench to study permation along porous tube. In: 21st AIAA International Space Planes and Hypersonics Technologies Conference, Xiamen, China (2017)

    Google Scholar 

  15. Poling, B., Prausnitz, J., O’Connell, S.: The properties of gases and liquids. McGraw-Hill Prof (2001). ISBN-13: 063-9785322160

    Google Scholar 

  16. Arakeri, J.: Bernoulli’s equation, Resonance. 5, 54–71 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussain Najmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Najmi, H., El-Tabach, E., Gascoin, N., Chetehouna, K., Falempin, F. (2019). Experimental Determination of Fluid Flow Parameters to Study Permeation Process Inside a Porous Channel. In: Chandrasekhar, U., Yang, LJ., Gowthaman, S. (eds) Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018). Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-2718-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2718-6_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2717-9

  • Online ISBN: 978-981-13-2718-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics