Skip to main content

Prenatal Mesenchymal Stem Cell Secretome and Its Clinical Implication

  • Chapter
  • First Online:
Perinatal Stem Cells

Abstract

Mesenchymal stem cells (MSCs) possess paracrine characteristic involving in the main therapeutic effects. The soluble factors secreted by MSCs are responsible for the paracrine activity, which have attracted more and more attention. These protein factors named secretome could be related to the biological processes such as wound healing, inflammatory response, angiogenesis, cell proliferation, chemotaxis, and neurogenesis. And they have bypassed the confounding issues of MSCs themselves. The MSC secretome in MSC-conditioned media (CM) could be manufactured and used as protein drugs. The cost of manufacturing, transport, and storage of secretome is lower than that of MSCs. Prenatal MSC secretome, especially placenta MSC secretome, has higher concentration and stronger capacities than that of other origins, which is a promising alternative to stem cell therapy for various diseases treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liang L, Li Z, Ma T, et al. Transplantation of human placenta-derived mesenchymal stem cells alleviates critical limb ischemia in diabetic nude rats. Cell Transplant. 2017;26(1):45–61.

    PubMed  PubMed Central  Google Scholar 

  2. Creane M, Howard L, O'Brien T, et al. Biodistribution and retention of locally administered human mesenchymal stromal cells: quantitative polymerase chain reaction-based detection of human DNA in murine organs. Cytotherapy. 2017;19(3):384–94.

    CAS  PubMed  Google Scholar 

  3. Gnecchi M, Danieli P, Malpasso G, et al. Paracrine mechanisms of mesenchymal stem cells in tissue repair. Methods Mol Biol. 2016;1416:123–46.

    CAS  PubMed  Google Scholar 

  4. Sarojini H, Estrada R, Lu H, et al. PEDF from mouse mesenchymal stem cell secretome attracts fibroblasts. J Cell Biochem. 2008;104(5):1793–802.

    CAS  PubMed  Google Scholar 

  5. Estrada R, Li N, Sarojini H, et al. Secretome from mesenchymal stem cells induces angiogenesis via Cyr61. J Cell Physiol. 2009;219:563–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ionescu L, Byrne RN, van Haaften T, et al. Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action. Am J Physiol Lung Cell Mol Physiol. 2012;303(11):L967–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Parekkadan B, van Poll D, Suganuma K, et al. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One. 2007;2(9):e941.

    PubMed  PubMed Central  Google Scholar 

  8. Xiang MX, He AN, Wang JA, et al. Protective paracrine effect of mesenchymal stem cells on cardiomyocytes. J Zhejiang Univ Sci B. 2009;10:619–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Xagorari A, Siotou E, Yiangou M, et al. Protective effect of mesenchymal stem cell-conditioned medium on hepatic cell apoptosis after acute liver injury. Int J Clin Exp Pathol. 2013;6(5):831–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakahara M, Okumura N, Kay EP, et al. Corneal endothelial expansion promoted by human bone marrow mesenchymal stem cell-derived conditioned medium. PLoS One. 2013;8(7):e69009.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang TF, Yew TL, Chiang ER, et al. Mesenchymal stem cells from a hypoxic culture improve and engraft Achilles tendon repair. Am J Sports Med. 2013;41:1117–25.

    PubMed  Google Scholar 

  12. Hwang HJ, Chang W, Song BW, et al. Antiarrhythmic potential of mesenchymal stem cell is modulated by hypoxic environment. J Am Coll Cardiol. 2012;60:1698–706.

    CAS  PubMed  Google Scholar 

  13. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838–43.

    PubMed  Google Scholar 

  14. Beyth S, Borovsky Z, Mevorach D, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood. 2005;105:2214–9.

    CAS  PubMed  Google Scholar 

  15. Meisel R, Zibert A, Laryea M, et al. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. 2004;103:4619–21.

    CAS  PubMed  Google Scholar 

  16. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815–22.

    CAS  PubMed  Google Scholar 

  17. Nauta AJ, Kruisselbrink AB, Lurvink E, et al. Mesenchymal stem cells inhibit generation and function of both CD34+−derived and monocyte-derived dendritic cells. J Immunol. 2006;177:2080–7.

    CAS  PubMed  Google Scholar 

  18. Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy. 2003;5:485–9.

    PubMed  Google Scholar 

  19. Khubutiya MS, Vagabov AV, Temnov AA, et al. Paracrine mechanisms of proliferative, anti-apoptotic and anti-inflammatory effects of mesenchymal stromal cells in models of acute organ injury. Cytotherapy. 2014;16:579–85.

    CAS  PubMed  Google Scholar 

  20. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11:723–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Svensson J, Jenmalm M, Matussek A, et al. Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10. J Immunol. 2011;7:3671–82.

    Google Scholar 

  22. Jeannin P, Duluc D, Delneste Y. IL-6 and leukemia-inhibitory factor are involved in the generation of tumor-associated macrophage: regulation by IFN-gamma. Immunotherapy. 2011;3:23–6.

    CAS  PubMed  Google Scholar 

  23. Buechler C, Ritter M, Orso E, et al. Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. J Leukoc Biol. 2000;67:97–103.

    CAS  PubMed  Google Scholar 

  24. Heusinkveld M, de Vos van Steenwijk PJ, Goedemans R, et al. M2 macrophages induced by prostaglandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells. J Immunol. 2011;187:1157–65.

    CAS  PubMed  Google Scholar 

  25. Asami T, Ishii M, Fujii H, et al. Modulation of murine macrophage TLR7/8-mediated cytokine expression by mesenchymal stem cell-conditioned medium. Mediators Inflamm. 2013;2013:264260.

    PubMed  PubMed Central  Google Scholar 

  26. Kuraitis D, Giordano C, Ruel M, et al. Exploiting extracellular matrix-stem cell interactions: a review of natural materials for therapeutic muscle regeneration. Biomaterials. 2012;33:428–43.

    CAS  PubMed  Google Scholar 

  27. Pawitan JA. Prospect of stem cell conditioned medium in regenerative medicine. Biomed Res Int. 2014;2014:965849.

    PubMed  PubMed Central  Google Scholar 

  28. Sassoli C, Frati A, Tani A, et al. Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P) exerts a stimulatory effect on skeletal myoblast proliferation. PLoS One. 2014;9(9):e108662.

    PubMed  PubMed Central  Google Scholar 

  29. Park YS, Hwang S, Jin YM. CCN1 secreted by tonsil derived mesenchymal stem cells promotes endothelial cell angiogenesis via integrinαvβ3 and AMPK. J Cell Physiol. 2015;230:140–9.

    CAS  PubMed  Google Scholar 

  30. Shen C, Lie P, Miao T, et al. Conditioned medium from umbilical cord mesenchymal stem cells induces migration and angiogenesis. Mol Med Rep. 2015;12(1):20–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Komaki M, Numata Y, Morioka C, et al. Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis. Stem Cell Res Ther. 2017;8(1):219.

    PubMed  PubMed Central  Google Scholar 

  32. Zhao Q, Hu J, Xiang J, et al. Intranasal administration of human umbilical cord mesenchymal stem cells-conditioned medium enhances vascular remodeling after stroke. Brain Res. 2015;1624:489–96.

    CAS  PubMed  Google Scholar 

  33. Kitaori T, Ito H, Schwarz EM, et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum. 2009;60(3):813–23.

    CAS  PubMed  Google Scholar 

  34. An JH, Park H, Song JA, et al. Transplantation of human umbilical cord blood-derived mesenchymal stem cells or their conditioned medium prevents bone loss in ovariectomized nude mice. Tissue Eng Part A. 2013;19(5–6):685–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ando Y, Matsubara K, Ishikawa J, et al. Stem cell-conditioned medium accelerates distraction osteogenesis through multiple regenerative mechanisms. Bone. 2014;61:82–90.

    PubMed  Google Scholar 

  36. Record M. Intercellular communication by exosomes in placenta: a possible role in cell fusion? Placenta. 2014;35(5):297–302.

    CAS  PubMed  Google Scholar 

  37. Furuta T, Miyaki S, Ishitobi H, et al. Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model. Stem Cells Transl Med. 2016;5(12):1620–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9:581–93.

    PubMed  Google Scholar 

  39. Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics. 2010;73:1907–20.

    CAS  PubMed  Google Scholar 

  40. Bruno S, Grange C, Deregibus MC, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol. 2009;20:1053–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Herrera MB, Fonsato V, Gatti S, et al. Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J Cell Mol Med. 2010;14(6b):1605–18.

    CAS  PubMed  Google Scholar 

  42. Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res (Amst). 2010;4:214–22.

    CAS  Google Scholar 

  43. Zhang S, Chu WC, Lai RC, et al. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr Cartil. 2016;24(12):2135–40.

    CAS  PubMed  Google Scholar 

  44. Yu B, Kim HW, Gong M, et al. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int J Cardiol. 2015;182:349–60.

    PubMed  Google Scholar 

  45. Timmers L, Lim SK, Hoefer IE, et al. Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res. 2011;6(3):206–14.

    PubMed  Google Scholar 

  46. Gnecchi M, Zhang Z, Ni A, et al. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103:1204–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jun EK, Zhang Q, Yoon BS, et al. Hypoxic conditioned medium from human amniotic fluid-derived mesenchymal stem cells accelerates skin wound healing through TGF-β/SMAD2 and PI3K/Akt pathways. Int J Mol Sci. 2014;15(1):605–28.

    PubMed  PubMed Central  Google Scholar 

  48. Walter MN, Wright KT, Fuller HR, et al. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays. Exp Cell Res. 2010;316(7):1271–81.

    CAS  PubMed  Google Scholar 

  49. Toupadakis CA, Wong A, Genetos DC, et al. Long-term administration of AMD3100, an antagonist of SDF-1/CXCR4 signaling, alters fracture repair. J Orthop Res. 2012;30:1853–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ishikawa M, Ito H, Kitaori T, et al. MCP/CCR2 signaling is essential for recruitment of mesenchymal progenitor cells during the early phase of fracture healing. PLoS One. 2014;9:e104954.

    PubMed  PubMed Central  Google Scholar 

  51. Li X, Bai J, Ji X, et al. Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. Int J Mol Med. 2014;34(3):695–704.

    PubMed  PubMed Central  Google Scholar 

  52. Hwang JH, Lee MJ, Seok OS. Cytokine expression in placenta-derived mesenchymal stem cells in patients with pre-eclampsia and normal pregnancies. Cytokine. 2010;49(1):95–101.

    CAS  PubMed  Google Scholar 

  53. Chen L, Xu Y, Zhao J, et al. Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice. PLoS One. 2014;9(4):e96161.

    PubMed  PubMed Central  Google Scholar 

  54. Tasso R, Gaetani M, Molino E, et al. The role of bFGF on the ability of MSC to activate endogenous regenerative mechanisms in an ectopic bone formation model. Biomaterials. 2012;33(7):2086–96.

    CAS  PubMed  Google Scholar 

  55. Clabaut A, Grare C, Léger T, et al. Variations of secretome profiles according to conditioned medium preparation: the example of human mesenchymal stem cell-derived adipocytes. Electrophoresis. 2015;36(20):2587–93.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liang, L. (2019). Prenatal Mesenchymal Stem Cell Secretome and Its Clinical Implication. In: Han, Z., Takahashi, T., Han, Z., Li, Z. (eds) Perinatal Stem Cells. Springer, Singapore. https://doi.org/10.1007/978-981-13-2703-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2703-2_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2702-5

  • Online ISBN: 978-981-13-2703-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics