Skip to main content

Surface Modification/Functionalization of Carbon Materials by Different Techniques: An Overview

  • Chapter
  • First Online:

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Carbon materials have agglomeration tendency because of high van der Wall force of interaction among the carbon particles. This agglomeration tendency has been an obstacle for their application in different fields. In order to reduce this agglomeration tendency and to explore their application areas, different surface modification/functionalization processes have been successfully developed by researchers. Surface functionalization reduces the agglomerating tendency of carbon materials and increases the carbon–polymer interfacial adhesion through covalent or ionic bonds. This chapter aims to depict an overview on the different types of surface functionalization techniques applied to different carbon materials like carbon blacks (CB), carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphenes, and fullerenes. The methodology like wet oxidation (oxidation using nitric acid, sulfuric acid, hydrogen peroxide, potassium permanganate, etc.), dry oxidation (oxidation with air, ozone, plasma, etc.), amidation, silanization, silylation, polymer grafting, polymer wrapping, surfactant adsorption, and encapsulation have been presented with different examples. All the functionalization processes have been highlighted with their specific application. The gathering of different functionalization processes in this chapter will provide deep understanding regarding the selection of a particular technique for specific application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192

    Article  CAS  PubMed  Google Scholar 

  2. Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41:1853–1859

    Article  CAS  Google Scholar 

  3. Hirsch A, Vostrowsky O (2005) Functionalization of carbon nanotubes. Top Curr Chem 245:193–237

    Article  CAS  Google Scholar 

  4. Nayak L, Khastgir D, Chaki TK (2012) Influence of carbon nanofibers reinforcement on thermal and electrical behavior of polysulfone nanocomposites. Polym Eng Sci 52:2424–2434

    Article  CAS  Google Scholar 

  5. Nayak L, Khastgir D, Chaki TK (2013) A mechanistic study on electromagnetic shielding effectiveness of polysulfone/carbon nanofibers nanocomposites. J Mater Sci 48:1492–1502

    Article  CAS  Google Scholar 

  6. Ma PC, Kim JK, Tang BZ (2006) Functionalization of carbon nanotubes using a silane coupling agent. Carbon 44:3232–3238

    Article  CAS  Google Scholar 

  7. Liu P (2005) Modifications of carbon nanotubes with polymers. Eur Polym J 41:2693–2703

    Article  CAS  Google Scholar 

  8. Hamon MA, Hui H, Bhowmik P (2002) Ester-functionalized soluble single-walled carbon nanotubes. Appl Phys A 74:333–338

    Article  CAS  Google Scholar 

  9. Stephenson JJ, Sadana AK, Higginbotham AL, Tour JM (2006) Highly functionalized and soluble multiwalled carbon nanotubes by reductive alkylation and arylation: the billups reaction. Chem Mater 18:4658–4661

    Article  CAS  Google Scholar 

  10. Esumi K, Ishigami M, Nakajima A, Sawada K, Honda H (1996) Chemical treatment of carbon nanotubes. Carbon 34:279–281

    Article  CAS  Google Scholar 

  11. Yu R, Chen L, Liu Q, Lin J, Tan KL, Ng SC, Chan HSO, Xu GQ, Andy Hor TS (1998) Platinum deposition on carbon nanotubes via chemical modification. Chem Mater 10:718–722

    Article  CAS  Google Scholar 

  12. Sham ML, Kim JK (2006) Surface functionalities of multi-wall carbon nanotubes after UV/ozone and TETA treatments. Carbon 44:768–777

    Article  CAS  Google Scholar 

  13. Ávila-Orta CA, Cruz-Delgado VJ, Neira-Velázquez MG, Hernández-Hernández E, Méndez-Padilla MG, Medellín-Rodríguez FJ (2009) Surface modification of carbon nanotubes with ethylene glycol plasma. Carbon 47:1916–1921

    Article  CAS  Google Scholar 

  14. Wang SC, Chang KS, Yuan CJ (2009) Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment. Electrochim Acta 54:4937–4943

    Article  CAS  Google Scholar 

  15. Star A, Stoddart JF, Steuerman D et al (2001) Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew Chem Int Ed 40:1721–1725

    Article  CAS  Google Scholar 

  16. Kostarelos K, Lacerda L, Pastorin G et al (2007) Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2:108–113

    Article  CAS  PubMed  Google Scholar 

  17. Sahoo NG, Jung YC, Yoo HJ, Cho JW (2006) Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites. Macromol Chem Phys 207:1773–1780

    Article  CAS  Google Scholar 

  18. Wang Y, Wu J, Wei F (2003) A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio. Carbon 41:2939–2948

    Article  CAS  Google Scholar 

  19. Wepasnick KA, Smith BA, Schrote KE, Wilson HK, Diegelmann SR, Fairbrother DH (2011) Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 49:24–36

    Article  CAS  Google Scholar 

  20. Bonifazi D, Nacci C, Marega R, Campidelli S, Ceballos G, Modesti S, Meneghetti M, Prato M (2006) Microscopic and spectroscopic characterization of paintbrush-like single-walled carbon nanotubes. Nano Lett 6:1408–1414

    Article  CAS  PubMed  Google Scholar 

  21. Ziegler KJ, Gu Z, Peng H, Flor EL, Hauge RH, Smalley RE (2005) Controlled oxidative cutting of single-walled carbon nanotubes. J Am Chem Soc 127:1541–1547

    Article  CAS  PubMed  Google Scholar 

  22. Jordan ME, Deery HJ, Hagopian E, Williams FR (1968) Process for producing furnace black pigments. Patent no. US3383232A

    Google Scholar 

  23. Boonstra BB, Dannenberg EM, Rossman RP, Williams FR (1971) Process for treating furnace carbon black. Patent no. US3565657A

    Google Scholar 

  24. Jean-Baptiste AD (1962) Water-soluble carbon black and production thereof. Patent no. US3023118A

    Google Scholar 

  25. Curtis JC, Taylor RL, Joyce GA (2000) Hydrogen peroxide oxidation of carbon black. Patent no. US6120594 A

    Google Scholar 

  26. Nagasawa T (1995) Water-based pigment ink and process for producing the same. Patent no. EP 0 688836 A2

    Google Scholar 

  27. Ito H, Momose M, Hayashi H, Ito S (2002) Aqueous pigment dispersion water base ink composition and recording method using the ink composition. Patent no. US6488753 B1

    Google Scholar 

  28. Sekiyama M, Saitoh T, Kirino T (2014) Method for producing aqueous dispersion of surface treated carbon black particles and aqueous dispersion of surface treated carbon black particles. Patent no. US20140000488A1

    Google Scholar 

  29. Adams CE, Belmont JA (1999) Modified carbon products and inks and coatings containing modified carbon products. Patent no. US5885335A

    Google Scholar 

  30. So HH, Cho JW, Sahoo NG (2007) Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites. Eur Polym J 43:3750–3756

    Article  CAS  Google Scholar 

  31. Spitalsky Z, Krontiras CA, Georga SN, Galiotis C (2009) Effect of oxidation treatment of multiwalled carbon nanotubes on the mechanical and electrical properties of their epoxy composites. Compos Part A 40:778–783

    Article  CAS  Google Scholar 

  32. Simsek Y, Ozyuzer L, Seyhan AT, Tanoglu M, Schulte K (2007) Temperature dependence of electrical conductivity in double-wall and multi-wall carbon nanotube/polyester nanocomposites. J Mater Sci 42:9689–9695

    Article  CAS  Google Scholar 

  33. Karl A (2007) Method for producing post treated carbon black. Patent no. US 7217405B2

    Google Scholar 

  34. Park YS, Choi YC, Kim KS, Chung DC (2001) High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing. Carbon 39:655–661

    Article  CAS  Google Scholar 

  35. Li C, Wang D, Liang Wang TX, Wu J, Hu X, Liang J (2004) Oxidation of multiwalled carbon nanotubes by air: benefits for electric double layer capacitors. Power technol 142:175–179

    Article  CAS  Google Scholar 

  36. Park WK, Kim JH, Lee SS, Kim J, Lee GW, Park M (2005) Effect of carbon nanotube pre-treatment on dispersion and electrical properties of melt mixed multi-walled carbon nanotubes/poly(methyl methacrylate) composites. Macromol Res 13:206–211

    Article  CAS  Google Scholar 

  37. Yuen SM, Ma CCM, Lin YY, Kuan HC (2007) Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite. Compos Sci Technol 67:2564–2573

    Article  CAS  Google Scholar 

  38. Melore PJ, Eckert FJ (1966) Preparation of long flow carbon black. Patent no. US3245820

    Google Scholar 

  39. Sutherland I, Sheng E, Bradley RH, Freakley PK (1996) Effects of ozone oxidation on carbon black Surfaces. J Mater Sci 31:5651–5655

    Article  CAS  Google Scholar 

  40. Stenger F, Bergemann K, Nagel M (2013) Process for after treating carbon black. US patent no. US8574527 B2

    Google Scholar 

  41. Yeh AG, et al. (2005) Self dispersing pigment and process for making and use of same. Patent no. US6852156B2

    Google Scholar 

  42. Vennerberg DC, Quirino RL, Jang Y, Kessler MR (2014) Oxidation behavior of multiwalled carbon nanotubes fluidized with ozone. ACS Appl Mater Interfaces 6:1835–1842

    Article  CAS  PubMed  Google Scholar 

  43. Mawhinney DB, Naumenko V, Kuznetsova A, Yates JT, Liu J, Smalley RE (2000) Infrared spectral evidence for the etching of carbon nanotubes: ozone oxidation at 298 K. J Am Chem Soc 122:2383–2384

    Article  CAS  Google Scholar 

  44. Cai L, Bahr JL, Yao Y, Tour JM (2002) Ozonation of single- walled carbon nanotubes and their assemblies on rigid self-assembled monolayers. Chem Mater 14:4235–4241

    Article  CAS  Google Scholar 

  45. Chen Z, Ziegler KJ, Shaver J, Hauge RH, Smalley RE (2006) Cutting of single-walled carbon nanotubes by ozonolysis. J Phys Chem B 110:11624–11627

    Article  CAS  PubMed  Google Scholar 

  46. Lu X, Zhang L, Xu X, Wang N, Zhang QJ (2002) Can the sidewalls of single-wall carbon nanotubes be ozonized? J Phys Chem B 106:2136–2139

    Article  CAS  Google Scholar 

  47. Banerjee S, Wong SS (2002) Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis. J Phys Chem B 106:12144–12151

    Article  CAS  Google Scholar 

  48. Hernadi K, Siska A, Thien-Nga L, Forro L, Kiricsi I (2001) Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes. Solid State Ion 141–142:203–209

    Article  Google Scholar 

  49. Criegee R (1975) Mechanism of ozonolysis. Angew Chem Int Ed 14(11):745–752

    Article  Google Scholar 

  50. Simmons JM, Nichols BM, Baker SE, Marcus MS, Castellini OM, Lee CS, Hamers RJ, Eriksson MA (2006) Effect of ozone oxidation on single-walled carbon nanotubes. J Phys Chem 110:7113–7118

    Article  CAS  Google Scholar 

  51. Byl O, Liu J, Yates JT (2005) Etching of carbon nanotubes by ozone: a surface area study. Langmuir 21:4200–4204

    Article  CAS  PubMed  Google Scholar 

  52. Hemraj-Benny T, Bandosz TJ, Wong SS (2008) Effect of ozonolysis on the pore structure, surface chemistry, and bundling of single-walled carbon nanotubes. J Colloid Interface Sci 317:375–382

    Article  CAS  PubMed  Google Scholar 

  53. Peng K, Liu LQ, Li H, Meyer H, Zhang Z (2011) Room temperature functionalization of carbon nanotubes using an ozone/water vapor mixture. Carbon 49:70–76

    Article  CAS  Google Scholar 

  54. Staehelin J, Hoigne J (1982) Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide. Environ Sci Technol 16:676–681

    Article  CAS  Google Scholar 

  55. Sotelo JL, Beltran FJ, Benitez FJ, Beltran-Heredia J (1987) Ozone decomposition in water: kinetic study. Ind Eng Chem Res 26:39–43

    Article  CAS  Google Scholar 

  56. Morales-Lara F, Perez-Mendoza MJ, Altmajer-Vaz D, Garca-Roman M, Melguizo M, Lopez-Garzon FJ, Domingo-Garca M (2013) Functionalization of multiwall carbon nanotubes by ozone at basic pH. Comparison with oxygen plasma and ozone in gas phase. J Phys Chem C 117:11647–11655

    Article  CAS  Google Scholar 

  57. Alder MR, Hill GC (1950) The kinetics and mechanism of hydroxide ion catalyzed ozone decomposition in aqueous solution. J Am Chem Soc 72:1884–1886

    Article  CAS  Google Scholar 

  58. Sehested K, Cotfltzen H, Holcman J, Flscher CH, Hart EJ (1991) The primary reaction in the decomposition of ozone in acidic aqueous solutions. Environ Sci Technol 25(9):1589–1596

    Article  CAS  Google Scholar 

  59. Li W, Bai Y, Zhang YK, Sun ML, Cheng RM, Xu XC et al (2005) Effect of hydroxyl radical on the structure of multi-walled carbon nanotubes. Synth Met 155:509–515

    Article  CAS  Google Scholar 

  60. Tressaud A, Shirasaki T, Nanse G, Papirer E (2002) Fluorinated carbon blacks: influence of the morphology of the starting material on the fluorination mechanism. Carbon 40:217–220

    Article  CAS  Google Scholar 

  61. Schukin LI, Kornievich MV, Vartapetjan RS, Beznisko SI (2002) Low-temperature plasma oxidation of activated carbons. Carbon 40:2028–2030

    Article  CAS  Google Scholar 

  62. Donnet JB, Wang WD, Vidal A (1994) Observation of plasma treated carbon black surfaces by scanning tunnelling microscopy. Carbon 32:199–2006

    Article  CAS  Google Scholar 

  63. Bruser V, Heintze M, Brandl W, Marginean G, Bubert H (2004) Surface modification of carbon nanofibres in low temperature plasmas. Diamond Relat Mater 13:1177–1181

    Article  CAS  Google Scholar 

  64. Favia P, Vietro ND, Mundo RD, Fracassi F, Agostino R (2006) Tuning the acid/base surface character of carbonaceous materials by means of cold plasma treatments. Plasma Processes Polym 3:66–74

    Article  CAS  Google Scholar 

  65. Heintze M, Bruser V, Brandl W, Marginean G, Bubert H, Haiber S (2003) Surface functionalization of carbon nano-fibers in fluidized bed plasma. Surf Coat Technol 174–175:831–834

    Article  CAS  Google Scholar 

  66. Sawada Y, Kogoma M (1997) Plasma-polymerized tetrafluoroethylene coatings on silica particles by atmospheric-pressure glow discharge. Powder Technol 90:245–250

    Article  CAS  Google Scholar 

  67. Okpalugo TIT, Papakonstantinou P, Murphy H, Mclaughlin J, Brown NMD (2005) Oxidative functionalization of carbon nanotubes in atmospheric pressure filamentary dielectric barrier discharge (APDBD). Carbon 43:2951–2959

    Article  CAS  Google Scholar 

  68. Hanabusa T, Uemiya S, Kojima T (1997) Surface modification of particles in a plasma jet fluidized bed reactor. Surf Coat Technol 88:226–231

    Article  CAS  Google Scholar 

  69. Erden S, Ho KKC, Lamoriniere S, Lee AF, Yildiz H, Bismark A (2010) Continuous atmospheric plasma oxidation of carbon fibres: Influence on the fibre surface and bulk properties and adhesion to polyamide 12. Plasma Chem Plasma Process 30:471–487

    Article  CAS  Google Scholar 

  70. Ho KKC, Lee AF, Lamoriniere S, Bismarck A (2008) Continuous atmospheric plasma fluorination of carbon fibres. Compos Part A Appl Sci Manuf 39:364–373

    Article  CAS  Google Scholar 

  71. Utegulov ZN, Mast DB (2005) Functionalization of single walled carbon nanotubes using isotropic plasma treatment: resonant ruman spectroscopy study. J Appl Phys 97:104324

    Article  CAS  Google Scholar 

  72. Bubert H, Haiber S, Brandl W, Marginean G, Heintze M, Bruser V (2003) Characterization of the uppermost layer of plasma-treated carbon nanotubes. Diamond Relat Mater 12:811–815

    Article  CAS  Google Scholar 

  73. Haiber S et al (2003) Analysis of functional groups on the surface of plasma—treated carbon nanofibers. Bioanal Chem 375:875–883

    Article  CAS  Google Scholar 

  74. Chirila V, Marginean TG, Brandl W (2005) Effect of the oxygen plasma treatment parameters on the carbon nanotubes surface properties. Surf Coat Technol 200:548–551

    Article  CAS  Google Scholar 

  75. Chen J, Hamon MA, Hu H et al (1998) Solution properties of single-walled carbon nanotubes. Science 282:95–98

    Article  CAS  PubMed  Google Scholar 

  76. Li L, Lin R, He H, Sun M, Jiang L, Gao M (2014) Interaction of amidated single-walled carbon nanotubes with protein by multiple spectroscopic methods. J Lumin 145:125–131

    Article  CAS  Google Scholar 

  77. Xu M, Huang Q, Chen Q, Guo P, Sun Z (2003) Synthesis and characterization of octadecylamine grafted multi-walled carbon nanotubes. Chem Phys Lett 375:598–604

    Article  CAS  Google Scholar 

  78. Pompeo F, Resasco DE (2002) Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine. Nano Lett 2:369–373

    Article  CAS  Google Scholar 

  79. Liu L, Zhang S, Hu T, Guo ZX, Ye C, Dai L, Zhu D (2002) Solubilized multi-walled carbon nanotubes with broadband optical limiting effect. Chem Phys Lett 359:191–195

    Article  CAS  Google Scholar 

  80. Wu W, Li J, Liu L, Yanga L, Guo ZX, Dai L, Zhu D (2002) The photoconductivity of PVK-carbon nanotube blends. Chem Phys Lett 364:196–199

    Article  CAS  Google Scholar 

  81. Hamon MA, Chen J, Hu H, Chen Y, Itkis ME, Rao AM, Eklund PC, Haddon RC (1999) Dissolution of single-walled carbon nanotubes. Adv Mater 11:834–840

    Article  CAS  Google Scholar 

  82. Hamon MA, Hu H, Bhowmik P, Niyogi S, Zhao B, Itkis ME, Haddon RC (2001) End-group and defect analysis of soluble single-walled carbon nanotubes. Chem Phys Lett 347:8–12

    Article  CAS  Google Scholar 

  83. Gao Y, Kyratzis I (2008) Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide—a critical assessment. Bioconjug Chem 19:1945–1950

    Article  CAS  PubMed  Google Scholar 

  84. Sano M, Kamino A, Okamura J, Shinkai S (2001) Ring closer of carbon nanotubes. Science 293:1299–1301

    Article  CAS  PubMed  Google Scholar 

  85. Huang WJ, Taylor S, Fu KF, Lin Y, Zhang DH, Hanks TW, Rao AM, Sun YP (2002) Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett 2:311–314

    Article  CAS  Google Scholar 

  86. Jiang KY, Schadler LS, Siegel RW, Zhang XJ, Zhang HF, Terrones M (2004) Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation. J Mater Chem 14:37–39

    Article  CAS  Google Scholar 

  87. Jeykumari DRS, Ramaprabhu S, Narayanan SS (2007) A thionine functionalized multiwalled carbon nanotube modified electrode for the determination of hydrogen peroxide. Carbon 45:1340–1353

    Article  CAS  Google Scholar 

  88. Wang Y, Iqbal Z, Mitra S (2005) Microwave-induced rapid chemical functionalization of single-walled carbon nanotubes. Carbon 43:1015–1020

    Article  CAS  Google Scholar 

  89. Shao L, Bai Y, Huang X, Gao Z, Meng L, Huang Y, Ma J (2009) Multi-walled carbon nanotubes (MWCNTs) functionalized with amino groups by reacting with supercritical ammonia fluids. Mater Chem Phys 116:323–326

    Article  CAS  Google Scholar 

  90. Kundu S, Xia W, Busser W, Becker M, Schmidt DA, Havenith M, Muhler M (2010) The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study. Phys Chem Phys 12:4351–4359

    Article  CAS  Google Scholar 

  91. Ford WE, Jung A, Hirsch A, Graupner R, Scholz F, Yasuda A, Wessels JM (2006) Urea-melt solubilization of single-walled carbon nanotubes. Adv Mater 18:1193–1197

    Article  CAS  Google Scholar 

  92. Aizawa M, Shaffer MSP (2003) Silylation of multi-walled carbon nanotubes. Chem Phys Lett 368:121–124

    Article  CAS  Google Scholar 

  93. Ma PC, Kim JK, Tang BZ (2007) Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocompositos. Compos Sci Technol 67:2965–2972

    Article  CAS  Google Scholar 

  94. Yuen SM, Ma CCM, Chiang CL, Teng CC, Yu YH (2008) Poly(vinyltriethoxysilane) modified MWCNT/polyimide nanocomposites—preparation, morphological, mechanical, and electrical properties. J Polym Sci Part A Polym Chem 46:803–816

    Article  CAS  Google Scholar 

  95. Vast L, Lallemand F, Colomer JF, Van Tendeloo G, Fonseca A, Mekhalif Z, Delhalle J (2009) Multiwalled carbon nanotubes functionalized with 7-octenyltrichlorosilane and n-octyltrichlorosilane: dispersion in Sylgard®184 silicone and young’s modulus. J Mater Sci 44:3476–3482

    Article  CAS  Google Scholar 

  96. Wood W, Kumar S, Zhong WH (2010) Synthesis of organosilane-modified carbon nanofibers and influence of silane coating thickness on the performance of polyethylene nanocomposites. Macromol Mater Eng 295:1125–1135

    Article  CAS  Google Scholar 

  97. Lee JH, Kathi J, Rhee KY, Lee JH (2010) Wear properties of 3-aminopropyl triethoxysilane-functionalized carbon nanotubes reinforced ultra high molecular weight polyethylene nanocomposites. Polym Eng Sci 50:1433–1439

    Article  CAS  Google Scholar 

  98. Gaspar H, Pereira C, Rebelo SLH, Pereira MFR, Figueiredo JL, Freire C (2011) Understanding the silylation reaction of multi-walled carbon nanotubes. Carbon 49:3441–3453

    Article  CAS  Google Scholar 

  99. Lin TW, Salzmann CG, Shao LD, Yu CH, Green MLH, Tsang SC (2009) Polyethylene glycol grafting and attachment of encapsulated magnetic iron oxide silica nanoparticles onto chlorosilanized single-wall carbon nanotubes. Carbon 47:1415–1420

    Article  CAS  Google Scholar 

  100. Hemraj-Benny T, Wong SS (2006) Silylation of single-walled carbon nanotubes. Chem Mater 18:4827–4839

    Article  CAS  Google Scholar 

  101. Velasco-Santos C, Martinez-Hernandez AL, Lozada-Cassou M, Alvarez-Castillo A, Castano VM (2002) Chemical funtionalization of carbon nanotubes through an organosilane. Nanotechnol 13:495

    Article  CAS  Google Scholar 

  102. Bag DS, Dubey R, Zhang N, Xie J, Varadan VK, Lal D, Mathur GN (2004) Chemical functionalization of carbon nanotubes with 3-methacryloxypropyl trimethoxysilane (3-MPTS). Smart Mater Struct 13:1263

    Article  CAS  Google Scholar 

  103. Velasco-Santos C, Martinez-Hernandez AL, Brostow W, Castano VM (2011) Influence of silanization treatment on thermomechanical properties of multiwalled carbon nanotubes: poly(methylmethacrylate) nanocomposites grafting of polymers chain. J Nanomater 2011:1–9

    Article  CAS  Google Scholar 

  104. Zhu J, Wei S, Ryu J, Budhathoki M, Liang G, Guo Z (2010) In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. J Mater Chem 20:4937–4948

    Article  CAS  Google Scholar 

  105. Hu X, Su E, Zhu B, Jia J, Yao P, Bai Y (2014) Preparation of silanized graphene/poly(methyl methacrylate) nanocomposites in situ copolymerization and its mechanical properties. Compos Sci Technol 97:6–11

    Article  CAS  Google Scholar 

  106. Kathi J, Rhee KY (2008) Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J Mater Sci 43:33–37

    Article  CAS  Google Scholar 

  107. Scheibe B, Borowiak-Palen E, Kalenczuk RJ (2009) Effect of the silanization processes on the properties of oxidized multiwalled carbon nanotubes. Acta Phys Pol A 116:S150–S155

    Article  CAS  Google Scholar 

  108. Palencia C, Rubio F, Merino C, Rubio J, Oteo JL (2009) Study of the silanization process in CNFs: time, temperature, silane type and concentration influence. J Nano Res 4:33–43

    Article  Google Scholar 

  109. Liu T, Wood W, Zhong WH (2011) Sensitivity of dielectric properties to wear process on carbon nanofiber/high-density polyethylene composites. Nanoscale Res Lett 6:7

    PubMed  Google Scholar 

  110. Yuen SM, Ma CCM, Chiang CL (2008) Silane grafted MWCNT/polyimide composites—preparation, morphological and electrical properties. Compos Sci Technol 68:2842–2848

    Article  CAS  Google Scholar 

  111. Wang DH, Sihn S, Roy AK, Baek JB, Tan LS (2010) Nanocomposites based on vapor-grown carbon nanofibers and an epoxy: functionalization, preparation and characterization. Eur Polym J 46:1404–1416

    Article  CAS  Google Scholar 

  112. Qu L, Lin Y, Hill DE, Zhou B (2004) Polyimide-functionalized carbon nanotubes: synthesis and dispersion in nanocomposite films. Macromolecules 37:6055–6060

    Article  CAS  Google Scholar 

  113. Yuen SM, Ma CCM, Chiang CL, Lin YY, Teng CC (2007) Preparation and morphological, electrical, and mechanical properties of polyimide-grafted MWCNT/polyimide composite. J Polym Sci Part A Polym Chem 45:3349–3358

    Article  CAS  Google Scholar 

  114. Viswanathan G, Chakrapani N, Yang H et al (2003) Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. J Amer Chem Soc 125:9258–9259

    Article  CAS  Google Scholar 

  115. Malikov EY, Muradov MB, Akperov OH, Eyvazova GM, Puskas R, Madarász D, Nagy L, Kukovecz A, Kónya Z (2014) Synthesis and characterization of polyvinyl alcohol based multiwalled carbon nanotu be nanocomposites. Phys E 61:129–134

    Article  CAS  Google Scholar 

  116. Chen S, Wu G, Liu Y, Long D (2006) Preparation of poly(acrylic acid) grafted multiwalled carbon nanotubes by a two-step irradiation technique. Macromol 39:330–334

    Article  CAS  Google Scholar 

  117. Geng Y, Liu MY, Li J, Shi XM, Kim JK (2008) Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Compos Part A 39:1876–1883

    Article  CAS  Google Scholar 

  118. Mao J, Liu Q, Lv X et al (2007) A water-soluble hybrid material of single-walled carbon nanotubes with an amphiphilic poly(phenyleneethynylene): preparation, characterization, and photovoltaic properties. J Nanosci Nanotech 7:2709–2718

    Article  CAS  Google Scholar 

  119. Herranz MA, Ehli C, Campidelli S, Guti Errez M, Hug GL, Ohkubo K, Fukuzumi S, Prato M, Martín N, Guldi DM (2008) Spectroscopic characterization of photolytically generated radical ion pairs in single-wall carbon nanotubes bearing surface-immobilized tetrathiafulvalenes. J Am Chem Soc 130:66–73

    Article  PubMed  CAS  Google Scholar 

  120. Kavakka JS, Heikkinen S, Kilpelainen I, Mattila M, Lipsanen H, Helaja J (2007) Noncovalent attachment of pyro-pheophorbide a to a carbon nanotube. Chem Commun 5:519–521

    Article  Google Scholar 

  121. O’Connell MJ, Boul P, Ericson LM et al (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342:265–271

    Article  Google Scholar 

  122. Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Amer Chem Soc 123:3838–3839

    Article  CAS  Google Scholar 

  123. Bonard JM et al (1997) Purification and size-selection of carbon nanotubes. Adv Mater 9:827–831

    Article  CAS  Google Scholar 

  124. Richard C, Balavoine F, Schultz P, Ebbesen TW, Mioskowski C (2003) Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 300:775–778

    Article  CAS  PubMed  Google Scholar 

  125. Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG (2002) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3:269–273

    Article  CAS  Google Scholar 

  126. Kang M, Myung SJ, Jin HJ (2006) Nylon 610 and carbon nanotube composite by in situ interfacial polymerization. Polymer 47:3961–3966

    Article  CAS  Google Scholar 

  127. Guldi DM, Martin N (2010) Carbon nanotubes and related structures—synthesis, characterization, functionalization, and applications, p 351

    Google Scholar 

  128. Porter AE, Gass M, Muller K, Skepper JN, Midgley PA, Welland M (2007) Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol 2:713–717

    Article  CAS  PubMed  Google Scholar 

  129. Kim JK, Kim Y, Park S, Ko H, Kim Y (2016) Encapsulation of organic active materials in carbon nanotubes for application to high-electrochemical-performance sodium batteries. Energy Environ Sci 9:1264–1269

    Article  CAS  Google Scholar 

  130. Cui X, Wang Y, Jiang G, Zhao Z, Xu C, Duan A, Liu J, Wei Y, Bai W (2014) The encapsulation of CdS in carbon nanotubes for stable and efficient photocatalysis. J Mater Chem A 2:20939–20946

    Article  CAS  Google Scholar 

  131. Meng L, Zhang X, Lu Q, Fei Z, Dyson PJ (2012) Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials 33:1689–1698

    Article  CAS  PubMed  Google Scholar 

  132. Pantarotto D, Briand JP, Prato M, Bianco A (2004) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun 10:16–17

    Article  CAS  Google Scholar 

  133. Kam NWS, Liu Z, Dai H (2005) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem 44:1–6

    Article  Google Scholar 

  134. Hampel S, Kunze D, Haase D, Kramer K, Rauschenbach M, Ritschel M et al (2008) Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth. Nanomedicine 3:175–178

    Article  CAS  PubMed  Google Scholar 

  135. Li J, Yap SQ, Yoong SL, Nayak TR, Chandra GW, Ang WH et al (2012) Carbon nanotube bottles for incorporation, release and enhanced cytotoxic effect of cisplatin. Carbon 50:1625–1634

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalatendu Nayak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nayak, L., Rahaman, M., Giri, R. (2019). Surface Modification/Functionalization of Carbon Materials by Different Techniques: An Overview. In: Rahaman, M., Khastgir, D., Aldalbahi, A. (eds) Carbon-Containing Polymer Composites. Springer Series on Polymer and Composite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-2688-2_2

Download citation

Publish with us

Policies and ethics