Skip to main content

Plasmapheresis in Pediatric Renal Disease

  • Chapter
  • First Online:
  • 1388 Accesses

Abstract

Plasmapheresis or therapeutic plasma exchange has been known to be useful either as a first-line treatment or a second-line therapy in pediatric renal disease. Data is limited in children, and the vast majority of the data is extrapolated from adult-based evidence. Of the many kidney diseases in children, TPE may be beneficial in a small number of diseases. These include glomerular disease with a rapidly progressive form, such as ANCA-associated rapidly progressive glomerulonephritis; anti-glomerular basement membrane (anti-GBM) disease (Goodpasture’s syndrome); nephrotic syndrome such as focal segmental glomerulosclerosis (FSGS), specifically after recurrence in kidney transplant; thrombotic microangiopathy (primary or secondary; and ABO incompatible kidney transplant or antibody-mediated rejection. This chapter reviews therapeutic apheresis with emphasis on special technical considerations unique to pediatric patients, including securing adequate vascular access, maintaining desired intravascular volume and circulating red cell mass, and preventing complications by early recognition of adverse reactions. Clinical applications of plasmapheresis in pediatric patients with renal diseases are discussed on the basis of evidence utilizing the American Society for Apheresis (ASFA) guidelines. Furthermore, the most current data on plasmapheresis in renal diseases, the indications and plasmapheresis treatment approach, as well as specific technical considerations in children are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schwartz J, Padmanabhan A, Aqui N, et al. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the writing committee of the American society for apheresis: the seventh special issue. J Clin Apher. 2016;31(3):149–62.

    PubMed  Google Scholar 

  2. Galacki DM. An overview of therapeutic apheresis in pediatrics. J Clin Apher. 1997;12(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  3. Friedman D, Kim H. Apheresis (chapter 38). In: Warady B, Alexander R, Fine RN, Schaefer F, editors. Pediatric dialysis. Dordrecht: Kluwer Academic Publishers; 2004. p. 629–48.

    Chapter  Google Scholar 

  4. Wong EC, Balogun RA. Therapeutic apheresis in pediatrics: technique adjustments, indications and nonindications, a plasma exchange focus. J Clin Apher. 2012;27(3):132–7.

    Article  PubMed  Google Scholar 

  5. Kim H. Therapeutic apheresis in pediatric patients. In: McLeod B, Szczepiorkowski Z, Weinstein R, Winters J, editors. Apheresis: principles and practice. 3rd ed. Bethesda: AABB Press; 2010. p. 445–64.

    Google Scholar 

  6. Kim H. Pediatric apheresis. In: Crookston K, editor. Therapeutic apheresis. A physician’s handbook. 6th ed. Bethesda: AABB Press; 2017. p. 231–71.

    Google Scholar 

  7. Kim HC. Red cell exchange: special focus on sickle cell disease. Hematology Am Soc Hematol Educ Program. 2014;2014(1):450–6.

    Article  PubMed  Google Scholar 

  8. Eguiguren JM, Schell MJ, Crist WM, Kunkel K, Rivera GK. Complications and outcome in childhood acute lymphoblastic leukemia with hyperleukocytosis. Blood. 1992;79(4):871–5.

    CAS  PubMed  Google Scholar 

  9. Ganzel C, Becker J, Mintz PD, Lazarus HM, Rowe JM. Hyperleukocytosis, leukostasis and leukapheresis: practice management. Blood Rev. 2012;26(3):117–22.

    Article  PubMed  Google Scholar 

  10. Inaba H, Fan Y, Pounds S, et al. Clinical and biologic features and treatment outcome of children with newly diagnosed acute myeloid leukemia and hyperleukocytosis. Cancer. 2008;113(3):522–9.

    Article  PubMed  Google Scholar 

  11. Giles FJ, Shen Y, Kantarjian HM, et al. Leukapheresis reduces early mortality in patients with acute myeloid leukemia with high white cell counts but does not improve long- term survival. Leuk Lymphoma. 2001;42(1-2):67–73.

    Article  CAS  PubMed  Google Scholar 

  12. Stegmayr B, Ptak J, Wikstrom B, et al. World apheresis registry 2003-2007 data. Transfus Apher Sci. 2008;39(3):247–54.

    Article  CAS  PubMed  Google Scholar 

  13. De Silvestro G, Tison T, Vicarioto M, Bagatella P, Stefanutti C, Marson P. The Italian registry of pediatric therapeutic apheresis: a report on activity during 2005. J Clin Apher. 2009;24(1):1–5.

    Article  PubMed  Google Scholar 

  14. Delaney M, Capocelli KE, Eder AF, et al. An international survey of pediatric apheresis practice. J Clin Apher. 2014;29(2):120–6.

    Article  PubMed  Google Scholar 

  15. Goto H, Matsuo H, Nakane S, et al. Plasmapheresis affects T helper type-1/T helper type-2 balance of circulating peripheral lymphocytes. Ther Apher. 2001;5(6):494–6.

    Article  CAS  PubMed  Google Scholar 

  16. Mohammad AJ, Jacobsson LT, Westman KW, Sturfelt G, Segelmark M. Incidence and survival rates in wegener’s granulomatosis, microscopic polyangiitis, churg-strauss syndrome and polyarteritis nodosa. Rheumatology (Oxford). 2009;48(12):1560–5.

    Article  Google Scholar 

  17. Watts RA, Al-Taiar A, Scott DG, Macgregor AJ. Prevalence and incidence of wegener’s granulomatosis in the UK general practice research database. Arthritis Rheum. 2009;61(10):1412–6.

    Article  PubMed  Google Scholar 

  18. Kamesh L, Harper L, Savage CO. ANCA-positive vasculitis. J Am Soc Nephrol. 2002;13(7):1953–60.

    Article  PubMed  Google Scholar 

  19. Kouri AM, Andreoli SP. Clinical presentation and outcome of pediatric ANCA-associated glomerulonephritis. Pediatr Nephrol. 2017;32(3):449–55.

    Article  PubMed  Google Scholar 

  20. Stone JH, Merkel PA, Spiera R, et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med. 2010;363(3):221–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Walsh M, Catapano F, Szpirt W, et al. Plasma exchange for renal vasculitis and idiopathic rapidly progressive glomerulonephritis: a meta-analysis. Am J Kidney Dis. 2011;57(4):566–74.

    Article  PubMed  Google Scholar 

  22. Jayne DR, Gaskin G, Rasmussen N, et al. Randomized trial of plasma exchange or high-dosage methylprednisolone as adjunctive therapy for severe renal vasculitis. J Am Soc Nephrol. 2007;18(7):2180–8.

    Article  CAS  PubMed  Google Scholar 

  23. McAdoo SP, Pusey CD. Anti-glomerular basement membrane disease. Clin J Am Soc Nephrol. 2017;12(7):1162–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lerner RA, Glassock RJ, Dixon FJ. The role of anti-glomerular basement membrane antibody in the pathogenesis of human glomerulonephritis. J Exp Med. 1967;126(6):989–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Clark WF, Huang SS, Walsh MW, Farah M, Hildebrand AM, Sontrop JM. Plasmapheresis for the treatment of kidney diseases. Kidney Int. 2016;90(5):974–84.

    Article  CAS  PubMed  Google Scholar 

  26. Levy JB, Turner AN, Rees AJ, Pusey CD. Long-term outcome of anti-glomerular basement membrane antibody disease treated with plasma exchange and immunosuppression. Ann Intern Med. 2001;134(11):1033–42.

    Article  CAS  PubMed  Google Scholar 

  27. Bayat A, Kamperis K, Herlin T. Characteristics and outcome of goodpasture’s disease in children. Clin Rheumatol. 2012;31(12):1745–51.

    Article  PubMed  Google Scholar 

  28. van Daalen EE, Jennette JC, McAdoo SP, et al. Predicting outcome in patients with anti-GBM glomerulonephritis. Clin J Am Soc Nephrol. 2018;13(1):63–72.

    Article  PubMed  Google Scholar 

  29. Hellmark T, Johansson C, Wieslander J. Characterization of anti-GBM antibodies involved in goodpasture’s syndrome. Kidney Int. 1994;46(3):823–9.

    Article  CAS  PubMed  Google Scholar 

  30. Hellmark T, Segelmark M. Diagnosis and classification of goodpasture’s disease (anti-GBM). J Autoimmun. 2014;48–49:108–12.

    Article  PubMed  Google Scholar 

  31. Williamson SR, Phillips CL, Andreoli SP, Nailescu C. A 25-year experience with pediatric anti-glomerular basement membrane disease. Pediatr Nephrol. 2011;26(1):85–91.

    Article  PubMed  Google Scholar 

  32. Johnson JP, Moore J Jr, Austin HA 3rd, Balow JE, Antonovych TT, Wilson CB. Therapy of anti-glomerular basement membrane antibody disease: analysis of prognostic significance of clinical, pathologic and treatment factors. Medicine (Baltimore). 1985;64(4):219–27.

    Article  CAS  Google Scholar 

  33. Zhang YY, Tang Z, Chen DM, Gong DH, Ji DX, Liu ZH. Comparison of double filtration plasmapheresis with immunoadsorption therapy in patients with anti-glomerular basement membrane nephritis. BMC Nephrol. 2014;15:128.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tonelli M, Wiebe N, Knoll G, et al. Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am J Transplant. 2011;11(10):2093–109.

    Article  CAS  PubMed  Google Scholar 

  35. Gillen DL, Stehman-Breen CO, Smith JM, et al. Survival advantage of pediatric recipients of a first kidney transplant among children awaiting kidney transplantation. Am J Transplant. 2008;8(12):2600–6.

    Article  CAS  PubMed  Google Scholar 

  36. Saran R, Li Y, Robinson B, et al. US renal data system 2015 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2016;67(3 Suppl 1):Svii, S1–305.

    Google Scholar 

  37. Jordan SC, Vo AA, Tyan D, Nast CC, Toyoda M. Current approaches to treatment of antibody-mediated rejection. Pediatr Transplant. 2005;9(3):408–15.

    Article  CAS  PubMed  Google Scholar 

  38. Mohan S, Palanisamy A, Tsapepas D, et al. Donor-specific antibodies adversely affect kidney allograft outcomes. J Am Soc Nephrol. 2012;23(12):2061–71.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fuchinoue S, Ishii Y, Sawada T, et al. The 5-year outcome of ABO-incompatible kidney transplantation with rituximab induction. Transplantation. 2011;91(8):853–7.

    Article  CAS  PubMed  Google Scholar 

  40. Genberg H, Kumlien G, Wennberg L, Berg U, Tyden G. ABO-incompatible kidney transplantation using antigen-specific immunoadsorption and rituximab: a 3-year follow-up. Transplantation. 2008;85(12):1745–54.

    Article  CAS  PubMed  Google Scholar 

  41. Montgomery RA, Lonze BE, King KE, et al. Desensitization in HLA-incompatible kidney recipients and survival. N Engl J Med. 2011;365(4):318–26.

    Article  CAS  PubMed  Google Scholar 

  42. Jordan SC, Tyan D, Stablein D, et al. Evaluation of intravenous immunoglobulin as an agent to lower allosensitization and improve transplantation in highly sensitized adult patients with end-stage renal disease: report of the NIH IG02 trial. J Am Soc Nephrol. 2004;15(12):3256–62.

    Article  PubMed  Google Scholar 

  43. Ejaz NS, Shields AR, Alloway RR, et al. Randomized controlled pilot study of B cell-targeted induction therapy in HLA sensitized kidney transplant recipients. Am J Transplant. 2013;13(12):3142–54.

    Article  CAS  PubMed  Google Scholar 

  44. Schweitzer EJ, Wilson JS, Fernandez-Vina M, et al. A high panel-reactive antibody rescue protocol for cross-match-positive live donor kidney transplants. Transplantation. 2000;70(10):1531–6.

    Article  CAS  PubMed  Google Scholar 

  45. Stegall MD, Gloor J, Winters JL, Moore SB, Degoey S. A comparison of plasmapheresis versus high-dose IVIG desensitization in renal allograft recipients with high levels of donor specific alloantibody. Am J Transplant. 2006;6(2):346–51.

    Article  CAS  PubMed  Google Scholar 

  46. Adamusiak AM, Stojanovic J, Shaw O, et al. Desensitization protocol enabling pediatric crossmatch-positive renal transplantation: successful HLA-antibody-incompatible renal transplantation of two highly sensitized children. Pediatr Nephrol. 2017;32(2):359–64.

    Article  PubMed  Google Scholar 

  47. Velidedeoglu E, Cavaille-Coll MW, Bala S, Belen OA, Wang Y, Albrecht R. Summary of 2017 FDA public workshop: antibody mediated rejection in kidney transplantation. Transplantation. 2018;102(6):e257–64.

    Article  PubMed  Google Scholar 

  48. Wan SS, Ying TD, Wyburn K, Roberts DM, Wyld M, Chadban SJ. The treatment of antibody-mediated rejection in kidney transplantation: an updated systematic review and meta-analysis. Transplantation. 2018;102(4):557–68.

    Article  PubMed  Google Scholar 

  49. Lefaucheur C, Nochy D, Andrade J, et al. Comparison of combination plasmapheresis/IVIg/anti-CD20 versus high-dose IVIg in the treatment of antibody-mediated rejection. Am J Transplant. 2009;9(5):1099–107.

    Article  CAS  PubMed  Google Scholar 

  50. Kiffel J, Rahimzada Y, Trachtman H. Focal segmental glomerulosclerosis and chronic kidney disease in pediatric patients. Adv Chronic Kidney Dis. 2011;18(5):332–8.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Trachtman R, Sran SS, Trachtman H. Recurrent focal segmental glomerulosclerosis after kidney transplantation. Pediatr Nephrol. 2015;30(10):1793–802.

    Article  PubMed  Google Scholar 

  52. Gallon L, Leventhal J, Skaro A, Kanwar Y, Alvarado A. Resolution of recurrent focal segmental glomerulosclerosis after retransplantation. N Engl J Med. 2012;366(17):1648–9.

    Article  CAS  PubMed  Google Scholar 

  53. Baum MA, Ho M, Stablein D, Alexander SR, North American Pediatric Renal Transplant Cooperative Study. Outcome of renal transplantation in adolescents with focal segmental glomerulosclerosis. Pediatr Transplant. 2002;6(6):488–92.

    Article  PubMed  Google Scholar 

  54. Garcia CD, Bittencourt VB, Tumelero A, Antonello JS, Malheiros D, Garcia VD. Plasmapheresis for recurrent posttransplant focal segmental glomerulosclerosis. Transplant Proc. 2006;38(6):1904–5.

    Article  CAS  PubMed  Google Scholar 

  55. Cleper R, Krause I, Bar Nathan N, et al. Focal segmental glomerulosclerosis in pediatric kidney transplantation: 30 years’ experience. Clin Transpl. 2016;30(10):1324–31.

    Article  Google Scholar 

  56. George JN, Nester CM. Syndromes of thrombotic microangiopathy. N Engl J Med. 2014;371(19):1847–8.

    PubMed  Google Scholar 

  57. Jodele S, Laskin BL, Dandoy CE, et al. A new paradigm: diagnosis and management of HSCT-associated thrombotic microangiopathy as multi-system endothelial injury. Blood Rev. 2015;29(3):191–204.

    Article  PubMed  Google Scholar 

  58. Jodele S, Licht C, Goebel J, et al. Abnormalities in the alternative pathway of complement in children with hematopoietic stem cell transplant-associated thrombotic microangiopathy. Blood. 2013;122(12):2003–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Christidou F, Athanasiadou A, Kalogiannidis P, et al. Therapeutic plasma exchange in patients with grade 2-3 hematopoietic stem cell transplantation-associated thrombotic thrombocytopenic purpura: a ten-year experience. Ther Apher Dial. 2003;7(2):259–62.

    Article  PubMed  Google Scholar 

  60. Jodele S, Laskin BL, Goebel J, et al. Does early initiation of therapeutic plasma exchange improve outcome in pediatric stem cell transplant-associated thrombotic microangiopathy? Transfusion. 2013;53(3):661–7.

    Article  CAS  PubMed  Google Scholar 

  61. Bohl SR, Kuchenbauer F, von Harsdorf S, et al. Thrombotic microangiopathy after allogeneic stem cell transplantation: a comparison of eculizumab therapy and conventional therapy. Biol Blood Marrow Transplant. 2017;23(12):2172–7.

    Article  CAS  PubMed  Google Scholar 

  62. Reese JA, Muthurajah DS, Kremer Hovinga JA, Vesely SK, Terrell DR, George JN. Children and adults with thrombotic thrombocytopenic purpura associated with severe, acquired Adamts13 deficiency: comparison of incidence, demographic and clinical features. Pediatr Blood Cancer. 2013;60(10):1676–82.

    Article  PubMed  Google Scholar 

  63. Tsai HM, Lian EC. Antibodies to von willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med. 1998;339(22):1585–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sarode R, Bandarenko N, Brecher ME, et al. Thrombotic thrombocytopenic purpura: 2012 American society for apheresis (ASFA) consensus conference on classification, diagnosis, management, and future research. J Clin Apher. 2014;29(3):148–67.

    Article  PubMed  Google Scholar 

  65. Bell WR, Braine HG, Ness PM, Kickler TS. Improved survival in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Clinical experience in 108 patients. N Engl J Med. 1991;325(6):398–403.

    Article  CAS  PubMed  Google Scholar 

  66. Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wilkinson JD, Pollack MM, Glass NL, Kanter RK, Katz RW, Steinhart CM. Mortality associated with multiple organ system failure and sepsis in pediatric intensive care unit. J Pediatr. 1987;111(3):324–8.

    Article  CAS  PubMed  Google Scholar 

  68. Stegmayr B, Ramlow W, Balogun RA. Beyond dialysis: current and emerging blood purification techniques. Semin Dial. 2012;25(2):207–13.

    Article  PubMed  Google Scholar 

  69. Hamishehkar H, Beigmohammadi MT, Abdollahi M, et al. Pro-inflammatory cytokine profile of critically ill septic patients following therapeutic plasma exchange. Transfus Apher Sci. 2013;48(1):75–8.

    Article  PubMed  Google Scholar 

  70. Busund R, Koukline V, Utrobin U, Nedashkovsky E. Plasmapheresis in severe sepsis and septic shock: a prospective, randomised, controlled trial. Intensive Care Med. 2002;28(10):1434–9.

    Article  PubMed  Google Scholar 

  71. Reeves JH, Butt WW, Shann F, et al. Continuous plasmafiltration in sepsis syndrome. Plasma filtration in sepsis study group. Crit Care Med. 1999;27(10):2096–104.

    Article  CAS  PubMed  Google Scholar 

  72. Nguyen TC, Han YY, Kiss JE, et al. Intensive plasma exchange increases a disintegrin and metalloprotease with thrombospondin motifs-13 activity and reverses organ dysfunction in children with thrombocytopenia-associated multiple organ failure. Crit Care Med. 2008;36(10):2878–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Michon B, Moghrabi A, Winikoff R, et al. Complications of apheresis in children. Transfusion. 2007;47(10):1837–42.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haewon C. Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Levy-Erez, D., Kim, H.C. (2019). Plasmapheresis in Pediatric Renal Disease. In: Sethi, S., Raina, R., McCulloch, M., Bunchman, T. (eds) Critical Care Pediatric Nephrology and Dialysis: A Practical Handbook. Springer, Singapore. https://doi.org/10.1007/978-981-13-2276-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2276-1_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2275-4

  • Online ISBN: 978-981-13-2276-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics