Skip to main content

Hierarchical Decomposition and Approximation of Sensor Data

  • Conference paper
  • First Online:
Proceedings of the 1st International Conference on Numerical Modelling in Engineering (NME 2018)

Abstract

This paper addresses the issue of hierarchical approximation and decomposition of long time series emerging from the observation of physical systems. The first level of the decomposition uses spatial weighted polynomial approximation to obtain local estimates for the state vectors of a system, i.e., values and derivatives. Covariance weighted Hermite approximation is used to approximate the next hierarchy of state vectors by using value and derivative information from the previous hierarchy to improve the approximation. This is repeated until a certain rate of compression and/or smoothing is reached. For further usage, methods for interpolation between the state vectors are presented to reconstruct the signal at arbitrary points. All derivations needed for the presented approach are provided in this paper along with derivations needed for covariance propagation. Additionally, numerical tests reveal the benefits of the single steps. The proposed hierarchical method is successfully tested on synthetic data, proving the validity of the concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To simplify readability, \(x_i\) is used for points in \(L_{0}\), \(x_j\) for points in \(L_{1}\) and \(x_k\) for points in \(L_{2}\) and above if not defined in another way. The subscripts (0), (1) and (2) denote the different levels.

  2. 2.

    The \(\hat{\text { }}\) notation is used here, since the given state vector is the ‘noisy’ input for the next level of approximation.

References

  1. Bajaj, C.L.: Multi-dimensional hermite interpolation and approximation for modelling and visualization. In: Proceedings of the IFIP TC5/WG5.2/WG5.10 CSI International Conference on Computer Graphics: Graphics, Design and Visualization, pp. 335–348. North-Holland Publishing Co., Amsterdam (1993). http://dl.acm.org/citation.cfm?id=645465.653690

  2. Burden, R.L., Faires, J.D.: Numerical Analysis, 872 edn. Cengage Learning. Thomson Brooks/Cole (2005). http://books.google.at/books?id=wmcL0y2avuUC

  3. Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74(368), 829 (1979). https://doi.org/10.2307/2286407. http://www.jstor.org/stable/2286407

    Article  MathSciNet  MATH  Google Scholar 

  4. Crochiere, R.E., Rabiner, L.R.: Multirate Digital Signal Processing. Prentice-Hall (1983). https://de.scribd.com/doc/82733332/Multirate-Digital-Signal-Processing-Crochiere-Rabiner

  5. Eilers, P.H.C.: A perfect smoother. Anal. Chem. 75(14), 3631–3636 (2003). https://doi.org/10.1021/ac034173t

    Article  Google Scholar 

  6. Epperson, J.F.: On the runge example. Am. Math. Monthly 94(4), 329 (1987). https://doi.org/10.2307/2323093. https://www.jstor.org/stable/2323093?origin=crossref

    Article  MathSciNet  MATH  Google Scholar 

  7. Grabocka, J., Wistuba, M., Schmidt-Thieme, L.: Scalable classification of repetitive time series through frequencies of local polynomials. IEEE Trans. Knowl. Data Eng. 27(6), 1683–1695 (2015). https://doi.org/10.1109/TKDE.2014.2377746. http://ieeexplore.ieee.org/document/6975152/

    Article  Google Scholar 

  8. Gupta, S., Ray, A., Keller, E.: Symbolic time series analysis of ultrasonic data for early detection of fatigue damage. Mech. Syst. Signal Process. 21(2), 866–884 (2007). https://doi.org/10.1016/j.ymssp.2005.08.022. http://linkinghub.elsevier.com/retrieve/pii/S0888327005001329

    Article  Google Scholar 

  9. Hermite, C.: Sur la formule d’interpolation de Lagrange. (Extrait d’une lettre de M. Ch. Hermite à M. Borchardt). Journal für die reine und angewandte Mathematik 84, 70–79 (1877). http://eudml.org/doc/148345

    MATH  Google Scholar 

  10. Jerri, A.J.: The Gibbs Phenomenon in Fourier Analysis, Splines, and Wavelet Approximations. Kluwer Academic Publishers, Boston (1998)

    Book  Google Scholar 

  11. Joldes, G.R., Chowdhury, H.A., Wittek, A., Doyle, B., Miller, K.: Modified moving least squares with polynomial bases for scattered data approximation. Appl. Math. Comput. 266, 893–902 (2015). https://doi.org/10.1016/j.amc.2015.05.150

    Article  MathSciNet  Google Scholar 

  12. Komargodski, Z., Levin, D.: Hermite type moving-least-squares approximations. Comput. Math. Appl. 51(8), 1223–1232 (2006). https://doi.org/10.1016/j.camwa.2006.04.005. http://linkinghub.elsevier.com/retrieve/pii/S0898122106000757

    Article  MathSciNet  MATH  Google Scholar 

  13. Marron, J.S., Hill, C.: Local polynomial smoothing under qualitative constraints. Computing Science and Statistics, pp. 647–652 (1997)

    Google Scholar 

  14. Mennig, J., Auerbach, T., Hälg, W.: Two point hermite approximations for the solution of linear initial value and boundary value problems. Comput. Methods Appl. Mech. Eng. 39(2), 199–224 (1983). https://doi.org/10.1016/0045-7825(83)90021-X

    Article  MathSciNet  Google Scholar 

  15. Moore, A.W., Schneider, J., Deng, K.: Efficient locally weighted polynomial regression predictions. In: International Conference on Machine Learning, pp. 236–244 (1997)

    Google Scholar 

  16. O’Leary, P., Harker, M.: Discrete polynomial moments and Savitzky-Golay smoothing. World Acad. Sci. Eng. Technol. Int. J. Comput. Inf. Eng. 72, 439–443 (2010). https://waset.org/publications/12268/discrete-polynomial-moments-and-savitzky-golay-smoothing

    Google Scholar 

  17. O’Leary, P., Harker, M.: Surface modelling using discrete basis functions for real-time automatic inspection. In: 3-D Surface Geometry and Reconstruction, pp. 216–264. IGI Global (2010). https://doi.org/10.4018/978-1-4666-0113-0.ch010. http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-0113-0.ch010

  18. O’Leary, P., Harker, M.: A framework for the evaluation of inclinometer data in the measurement of structures. IEEE Trans. Instrum. Meas. 61(5), 1237–1251 (2012). https://doi.org/10.1109/TIM.2011.2180969. http://ieeexplore.ieee.org/document/6162983/

    Article  Google Scholar 

  19. O’Leary, P., Harker, M.: Inverse boundary value problems with uncertain boundary values and their relevance to inclinometer measurements. In: 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, pp. 165–169. IEEE (2014). https://doi.org/10.1109/I2MTC.2014.6860725. http://ieeexplore.ieee.org/document/6860725/

  20. O’Leary, P., Harker, M., Neumayr, R.: Savitzky-Golay smoothing for multivariate cyclic measurement data. In: 2010 IEEE International Instrumentation and Measurement Technology Conference, I2MTC 2010 - Proceedings, pp. 1585–1590 (2010). https://doi.org/10.1109/IMTC.2010.5488242

  21. Poincaré, H.: Sur le probleme des trois corps et les équations de la dynamique. Acta Math. 13(1), 5–7 (1890). https://doi.org/10.1007/BF02392506

    Article  MathSciNet  Google Scholar 

  22. Proietti, T., Luati, A.: Low-pass filter design using locally weighted polynomial regression and discrete prolate spheroidal sequences. J. Stat. Plan. Inference 141(2), 831–845 (2011). https://doi.org/10.1016/j.jspi.2010.08.006. http://linkinghub.elsevier.com/retrieve/pii/S0378375810003769

    Article  MathSciNet  MATH  Google Scholar 

  23. Racine, J.S.: Local polynomial derivative estimation: analytic or taylor? In: Essays in Honor of Aman Ullah (Advances in Econometrics), Chap. 18, vol. 36, pp. 617–633. Emerald Group Publishing Limited (2016). https://doi.org/10.1108/S0731-905320160000036027. http://www.emeraldinsight.com/doi/10.1108/S0731-905320160000036027

    Google Scholar 

  24. Rajagopalan, V., Ray, A., Samsi, R., Mayer, J.: Pattern identification in dynamical systems via symbolic time series analysis. Pattern Recogn. 40(11), 2897–2907 (2007). https://doi.org/10.1016/j.patcog.2007.03.007

    Article  MATH  Google Scholar 

  25. Runge, C.: Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten. Zeitschrift für Mathematik und Physik 46, 224–243 (1901)

    MATH  Google Scholar 

Download references

Acknowledgments

Partial funding for this work was provided by the Austrian research funding association (FFG) under the scope of the COMET program within the K2 center “IC-MPP” (contract number 859480). This programme is promoted by BMVIT, BMDW and the federal states of Styria, Upper Austria and Tyrol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Ritt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ritt, R., O’Leary, P., Rothschedl, C.J., Almasri, A., Harker, M. (2019). Hierarchical Decomposition and Approximation of Sensor Data. In: Abdel Wahab, M. (eds) Proceedings of the 1st International Conference on Numerical Modelling in Engineering . NME 2018. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-2273-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2273-0_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2272-3

  • Online ISBN: 978-981-13-2273-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics