Skip to main content

Benchmarking of FEHM Control Volume Finite Element Solver

  • Conference paper
  • First Online:
Proceedings of the 8th International Congress on Environmental Geotechnics Volume 1 (ICEG 2018)

Part of the book series: Environmental Science and Engineering ((ENVENG))

Included in the following conference series:

  • 3084 Accesses

Abstract

Numerical modeling of groundwater and geothermal problems has expanded in the past few years due to the increase in computational power and software. The size and complexity of solutions attempted has grown in step with computational abilities. Problems with larger numbers of total nodes, with complex geology involving faulting, as well as coupling of multiple physical processes (geothermal, CO2 sequestration) are now being attempted. Los Alamos National Laboratory (LANL) has invested over 50 man-years of effort into the FEHM control volume finite element solver over the past number of decades. The code has been used on US EPA Superfund sites, low and high level nuclear waste sites, and a variety of fundamental hydrogeological applications. The code allows for complex coupling of processes including non-isothermal models and can solve more complex problems than existing commercial codes. LANL and SoilVision Systems Ltd., have combined efforts to offer groundwater and geothermal numerical modeling solutions of larger and more complex systems. In order to gain confidence in the combined front end, solver, and back end visualization system, a number of benchmarks have been created in order to document performance. This paper presents the results of benchmarks created to test the performance of the new groundwater and geothermal modeling system. Performance of the system is discussed as well as challenges and hurdles encountered in the collaboration. The ability of the system to scale up to model field-scale systems will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dash ZV, Robinson BA, Pawar RJ, Chu S: Software Validation Report for the FEHM Application Version 3.1-3, X

    Google Scholar 

  2. Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soils. Wiley

    Google Scholar 

  3. Holtz RD, Kovacs WD (1981) An Introduction to Geotechnical Engineering. Prentice Hall, Englewood Cliffs

    Google Scholar 

  4. Theis CV (1935) The relation between the lowering of the Piezometric surface and the rate and duration of discharge of a well using ground-water storage Eos. Trans. Am. Geophys. Union 16(2):519–524

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Fredlund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fredlund, M.D., Meng, S., Zyvolosk, G.A., Stauffer, P.H., Orr, S. (2019). Benchmarking of FEHM Control Volume Finite Element Solver. In: Zhan, L., Chen, Y., Bouazza, A. (eds) Proceedings of the 8th International Congress on Environmental Geotechnics Volume 1. ICEG 2018. Environmental Science and Engineering(). Springer, Singapore. https://doi.org/10.1007/978-981-13-2221-1_57

Download citation

Publish with us

Policies and ethics