Skip to main content

MALDI Mass Spectrometry Imaging of N-Linked Glycans in Tissues

  • Chapter
  • First Online:
Glycobiophysics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1104))

Abstract

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used for two decades to profile the glycan constituents of biological samples. An adaptation of the method to tissues, MALDI mass spectrometry imaging (MALDI-MSI), allows high-throughput spatial profiling of hundreds to thousands of molecules within a single thin tissue section. The ability to profile N-glycans within tissues using MALDI-MSI is a recently developed method that allows identification and localization of 40 or more N-glycans. The key component is to apply a molecular coating of peptide-N-glycosidase to tissues, an enzyme that releases N-glycans from their protein carrier. In this chapter, the methods and approaches to robustly and reproducibly generate two-dimensional N-glycan tissue maps by MALDI-MSI workflows are summarized. Current strengths and limitations of the approach are discussed, as well as potential future applications of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FFPE:

Formalin-fixed paraffin-embedded

FT-ICR:

Fourier transform ion cyclotron resonance

Fuc:

Fucose

GlcNAc:

N-acetylglucosamine

GnT-III:

N-acetylglucosaminyltransferase 3

GnT-IV:

N-acetylglucosaminyltransferase 4

GnT-V:

N-acetylglucosaminyltransferase 5

Hex:

Hexose (e.g., mannose, glucose, galactose)

HexNAc:

N-acetylhexosamine (e.g., N-acetylglucosamine or N-acetylgalactosamine)

LacNAc:

Lactosamine (galactose and N-acetylglucosamine disaccharide)

MALDI-TOF MS:

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry

Man:

Mannose

MS:

Mass Spectrometry

MSI:

Mass spectrometry imaging

NeuAc:

N-acetylneuraminic acid (sialic acid)

NeuGc:

N-glycolylneuraminic acid

PNGaseF:

Peptide-N-glycosidase F

TFA:

trifluoroacetic acid

TMA:

Tissue microarray

Literature Citations

  • Angel PM, Caprioli RM (2013) Matrix-assisted laser desorption ionization imaging mass spectrometry: in situ molecular mapping. Biochemistry 52(22):3818–3828

    Article  CAS  Google Scholar 

  • Angel PM, Baldwin HS, Gottlieb Sen D, Su YR, Mayer JE, Bichell D, Drake RR (2017a) Advances in MALDI imaging mass spectrometry of proteins in cardiac tissue, including the heart valve. Biochim Biophys Acta 1865(7):927–935

    Article  CAS  Google Scholar 

  • Angel PM, Mehta A, Norris-Caneda K, Drake RR (2017b) MALDI imaging mass spectrometry of N-glycans and tryptic peptides from the same formalin-fixed, paraffin-embedded tissue section. Methods Mol Biol In press

    Google Scholar 

  • Angel PM, Comte-Walters S, Ball LE, Talbot K, Mehta A, Brockbank KGM, Drake RR (2017c) Mapping extracellular matrix proteins in formalin-fixed, paraffin-embedded tissues by MALDI imaging mass spectrometry. J Proteome Res 17(1):635–646

    Article  Google Scholar 

  • Baker TC, Han J, Borchers CH (2017) Recent advancements in matrix-assisted laser desorption/ionization mass spectrometry imaging. Curr Opin Biotechnol 43:62–69

    Article  CAS  Google Scholar 

  • Berin A, Boughton BA (2017) Spatial metabolite profiling by matrix-assisted laser desorption ionization mass spectrometry imaging. Adv Exp Med Biol 965:291–322

    Article  Google Scholar 

  • Bern M, Brito AE, Pang PC, Rekhi A, Dell A, Haslam SM (2013) Polylactosaminoglycan glycomics: enhancing the detection of high-molecular-weight N-glycans in matrix-assisted laser desorption ionization time-of-flight profiles by matched filtering. Mol Cell Proteomics 12(4):996–1004

    Article  CAS  Google Scholar 

  • Briggs MT, Kuliwaba JS, Muratovic D, Everest-Dass AV, Packer NH, Findlay DM, Hoffmann P (2016) MALDI mass spectrometry imaging of N-glycans on tibial cartilage and subchondral bone proteins in knee osteoarthritis. Proteomics 16(11–12):1736–1741

    Article  CAS  Google Scholar 

  • Briggs MT, Ho YY, Kaur G, Oehler MK, Everest-Dass AV, Packer NH, Hoffmann P (2017) N-Glycan matrix-assisted laser desorption/ionization mass spectrometry imaging protocol for formalin-fixed paraffin-embedded tissues. Rapid Commun Mass Spectrom 31(10):825–841

    Article  CAS  Google Scholar 

  • Bruntz RC, Lane AN, Higashi RM, Fan TW (2017) Exploring cancer metabolism using stable isotope-resolved metabolomics (SIRM). J Biol Chem 292(28):11,601–11,609

    Article  CAS  Google Scholar 

  • Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4(10):828–833

    Article  CAS  Google Scholar 

  • Drake RR, Powers TW, Jones EE, Bruner E, Mehta AS, Angel PM (2017) MALDI Mass Spectrometry Imaging of N-Linked Glycans in Cancer Tissues. Adv Cancer Res 134:85–116

    Article  CAS  Google Scholar 

  • Everest-Dass AV, Briggs MT, Kaur G, Oehler MK, Hoffmann P, Packer NH (2016) N-Glycan MALDI imaging mass spectrometry on formalin-fixed paraffin-embedded tissue enables the delineation of ovarian cancer tissues. Mol Cell Proteomics 15(9):3003–3016

    Article  CAS  Google Scholar 

  • Fenn LS, McLean JA (2011) Structural resolution of carbohydrate positional and structural isomers based on gas-phase ion mobility-mass spectrometry. Physical Chemistry Chemical Physics 13(6):2196–2205

    Article  CAS  Google Scholar 

  • Gray CJ, Thomas B, Upton R, Migas LG, Eyers CE, Barran PE et al (2016) Applications of ion mobility mass spectrometry for high throughput, high resolution glycan analysis. Biochim Biophys Acta 1860(8):1688–1709

    Article  CAS  Google Scholar 

  • Gustafsson OJ, Briggs MT, Condina MR, Winderbaum LJ, Pelzing M, McColl SR et al (2015) MALDI imaging mass spectrometry of N-linked glycans on formalin-fixed paraffin-embedded murine kidney. Anal Bioanal Chem 407:2127–2139

    Article  CAS  Google Scholar 

  • Harvey DJ (1999) Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev 18:349–450

    Article  CAS  Google Scholar 

  • Harvey DJ (2015) Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009–2010. Mass Spectrom Rev 34(3):268–422

    Article  CAS  Google Scholar 

  • Heijs B, Holst S, Briaire-de Bruijn IH, van Pelt GW, de Ru AH, van Veelen PA et al (2016) Multimodal mass spectrometry imaging of N-Glycans and proteins from the same tissue section. Anal Chem 88:7745–7753

    Article  CAS  Google Scholar 

  • Holst S, Heijs B, de Haan N, van Zeijl RJ, Briaire-de Bruijn IH, van Pelt GW et al (2016) Linkage-specific in Situ Sialic Acid derivatization for N-Glycan mass spectrometry imaging of formalin-fixed paraffin-embedded tissues. Anal Chem 88(11):5904–5913

    Article  CAS  Google Scholar 

  • Kawano S, Hashimoto K, Miyama T, Goto S, Kanehisa M (2005) Prediction of glycan structures from gene expression data based on glycosyltransferase reactions. Bioinformatics 21:3976–3982

    Article  CAS  Google Scholar 

  • Kinoshita M, Mitsui Y, Kakoi N, Yamada K, Hayakawa T, Kakehi K (2014) Common glycoproteins expressing polylactosamine-type glycans on matched patient primary and metastatic melanoma cells show different glycan profiles. J Proteome Res 13(2):1021–1033

    Article  CAS  Google Scholar 

  • Liu G, Neelamegham S (2014) A computational framework for the automated construction of glycosylation reaction networks. PLoS One 9(6):e100939

    Article  Google Scholar 

  • Loke I, Kolarich D, Packer NH, Thaysen-Andersen M (2016) Emerging roles of protein mannosylation in inflammation and infection. Mol Asp Med 51:31–55

    Article  CAS  Google Scholar 

  • Miwa HE, Song Y, Alvarez R, Cummings RD, Stanley P (2012) The bisecting GlcNAc in cell growth control and tumor progression. Glycoconj J 29(8–9):609–618

    Article  CAS  Google Scholar 

  • Nairn AV, York WS, Harris K, Hall EM, Pierce JM, Moremen KW (2008) Regulation of glycan structures in animal tissues: transcript profiling of glycan-related genes. J Biol Chem 283(25):17,298–17,313

    Article  CAS  Google Scholar 

  • Neelamegham S, Mahal LK (2016) Multi-level regulation of cellular glycosylation: from genes to transcript to enzyme to structure. Curr Opin Struct Biol 40:145–152

    Article  CAS  Google Scholar 

  • Nishikaze T (2017) Sensitive and structure-informative N-Glycosylation analysis by MALDI-MS; ionization, fragmentation, and derivatization. Mass Spectrom 6(1):A0060

    Article  Google Scholar 

  • Nyalwidhe JO, Betesh LR, Powers TW, Jones EE, White KY, Burch TC et al (2013) Increased bisecting N-acetylglucosamine and decreased branched chain glycans of N-linked glycoproteins in expressed prostatic secretions associated with prostate cancer progression. Proteomics Clinical Applications 7:677–689

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor PB, Costello CE (2001) A high pressure matrix-assisted laser desorption/ionization fourier transform mass spectrometry ion source for thermal stabilization of labile biomolecules. Rapid Commun Mass Spectrom 15:1862–1868

    Article  Google Scholar 

  • Ogrinc Potočnik N, Porta T, Becker M, Heeren RM, Ellis SR (2015) Use of advantageous, volatile matrices enabled by next-generation high-speed matrix-assisted laser desorption/ionization time-of-flight imaging employing a scanning laser beam. Rapid Commun Mass Spectrom 29(23):2195–2203

    Article  Google Scholar 

  • Pearce OM, Läubli H (2016) Sialic acids in cancer biology and immunity. Glycobiology 26(2):111–128

    Article  CAS  Google Scholar 

  • Pinho SS, Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15(9):540–555

    Article  CAS  Google Scholar 

  • Powers TW, Jones EE, Betesh LR, Romano PR, Gao P, Copeland JA et al (2013) Matrix assisted laser desorption ionization imaging mass spectrometry workflow for spatial profiling analysis of N-linked glycan expression in tissues. Anal Chem 85:9799–9806

    Article  CAS  Google Scholar 

  • Powers TW, Neely BA, Shao Y, Tang H, Troyer DA, Mehta AS et al (2014) MALDI imaging mass spectrometry profiling of N-glycans in formalin-fixed paraffin embedded clinical tissue blocks and tissue microarrays. PLoS One 9(9):e106255

    Article  Google Scholar 

  • Powers TW, Holst S, Wuhrer M, Mehta AS, Drake RR (2015) Two-Dimensional N-Glycan distribution mapping of hepatocellular Carcinoma tissues by MALDI-Imaging mass spectrometry. Biomolecules 5(4):2554–2272

    Article  CAS  Google Scholar 

  • Reiding KR, Blank D, Kuijper DM, Deelder AM, Wuhrer M (2014) High-throughput profiling of protein N-glycosylation by MALDI-TOF-MS employing linkage-specific sialic acid esterification. Analytical Chemistry 86:5784–5793

    Article  CAS  Google Scholar 

  • Rini J, Esko J, Varki A (2009) Chapter 5: Glycosyltransferases and Glycan-processing Enzymes. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of Glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Ryczko MC, Pawling J, Chen R, Abdel Rahman AM, Yau K, Copeland JK, Zhang C, Surendra A, Guttman DS, Figeys D, Dennis JW (2016) Metabolic reprogramming by Hexosamine biosynthetic and Golgi N-Glycan branching pathways. Sci Rep 6:23043

    Article  CAS  Google Scholar 

  • Schneider M, Al-Shareffi E, Haltiwanger RS (2017) Biological functions of fucose in mammals. Glycobiology 27(7):601–618

    Article  CAS  Google Scholar 

  • Schultz MJ, Swindall AF, Bellis SL (2012) Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev 31(3–4):501–518

    Article  CAS  Google Scholar 

  • Sekiya S, Wada Y, Tanaka K (2005) Derivatization for stabilizing sialic acids in MALDI-MS. Anal Chem 77(15):4962–4968

    Article  CAS  Google Scholar 

  • Škrášková K, Claude E, Jones EA, Towers M, Ellis SR, Heeren RM (2016) Enhanced capabilities for imaging gangliosides in murine brain with matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry coupled to ion mobility separation. Methods 104:69–78

    Article  Google Scholar 

  • Stanley P, Schachter H, Taniguchi N (2009) Chapter 8: N-Glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of Glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Taniguchi N, Kizuka Y (2015) Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics. Adv Cancer Res 126:11–51

    Article  Google Scholar 

  • Wang D (2012) N-glycan cryptic antigens as active immunological targets in prostate cancer patients. J Proteomics Bioinformatics 5:90–95

    Google Scholar 

  • Wang D, Dafik L, Nolley R, Huang W, Wolfinger RD, Wang LX et al (2013) Anti-oligomannose antibodies as potential serum biomarkers of aggressive prostate cancer. Drug Dev Res 74:65–80

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Institutes of Health/National Cancer Institute R21 CA185799 to RRD and the National Institutions of Health/National Institute of General Medical Sciences P20GM103542 to PMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard R. Drake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Drake, R.R., West, C.A., Mehta, A.S., Angel, P.M. (2018). MALDI Mass Spectrometry Imaging of N-Linked Glycans in Tissues. In: Yamaguchi, Y., Kato, K. (eds) Glycobiophysics. Advances in Experimental Medicine and Biology, vol 1104. Springer, Singapore. https://doi.org/10.1007/978-981-13-2158-0_4

Download citation

Publish with us

Policies and ethics