Skip to main content

Plant Hormones as Mediators of Stress Response in Tea Plants

  • Chapter
  • First Online:
Stress Physiology of Tea in the Face of Climate Change

Abstract

The roles of hormones in plant growth, development and responses to stress have extensively been studied in model plants as well as some crop species. Some important genes, molecular players, and transcription factors (TFs) have been shown to play a vital role in mediating multiple hormone-regulated processes and stress responses. Recent transcriptomic analysis in tea plants identified some interesting candidates that are potentially involved in the hormonal control based on the knowledge of model plants. Identification of these genes suggests that modulation of hormone biosynthesis and signaling pathways can be effective toward manipulation of tea composition (quality) and stress tolerance; however, the issue has never been thoroughly reviewed. In this chapter, we aim to discuss those putative genes and TFs and link them with the response of tea plants to different environmental stimuli. In addition, the underlying physiological and molecular mechanisms of hormone-mediated responses to environmental stress are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard P, Renou JP, Berthomé R, Harberd NP, Genschik P (2008a) Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol 18:656–660

    Article  CAS  Google Scholar 

  • Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008b) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129

    Article  CAS  Google Scholar 

  • Ahammed GJ, Xia XJ, Li X, Shi K, Yu JQ, Zhou YH (2015) Role of brassinosteroid in plant adaptation to abiotic stresses and its interplay with other hormones. Curr Protein Pept Sci 16:462–473

    Article  CAS  Google Scholar 

  • Ahammed GJ, Li X, Zhou J, Zhou YH, Yu JQ (2016) Role of hormones in plant adaptation to heat stress. In: Plant hormones under challenging environmental factors. Springer, Dordrecht, pp 1–21

    Google Scholar 

  • Ahmed S, Stepp JR, Orians C, Griffin T, Matyas C, Robbat A, Cash S, Xue D, Long C, Unachukwu U, Buckley S, Small D, Kennelly E (2014) Effects of extreme climate events on tea (Camellia sinensis) functional quality validate indigenous farmer knowledge and sensory preferences in tropical China. PLoS One 9(10):e109126

    Article  Google Scholar 

  • Akula A, Akula C, Bateson M (2000) Betaine a novel candidate for rapid induction of somatic embryogenesis in tea (Camellia sinensis (L.) O. Kuntze). Plant Growth Regul 30:241–246

    Article  CAS  Google Scholar 

  • Alvarez S, Marsh EL, Schroeder SG, Schachtman DP (2008) Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ 31:325–340

    Article  CAS  Google Scholar 

  • Bali S, Poonam, Gautam V, Kaur P, Khanna K, Kaur R, Vig AP, Ohri P, Bhardwaj R (2017) Interaction of salicylic acid with plant hormones in plants under abiotic stress. In: Nazar R et al (eds) Salicylic acid: a multifaceted hormone. Springer, Singapore. https://doi.org/10.1007/978-981-10-6068-7_10

    Chapter  Google Scholar 

  • Bidarigh S, Hatamzadeh A, Azarpour E (2012) The study effect of IBA hormone levels on rooting in micro cuttings of tea (Camellia sinensis L.). World Appl Sci J 20:1051–1054

    CAS  Google Scholar 

  • Chakravarthy S, Tuori RP, D’Ascenzo MD, Fobert PR, Després C, Martin GB (2003) The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell 15:3033–3050

    Article  CAS  Google Scholar 

  • Chandra K, Pandey R (1998) Influence of some bioregulators on quality traits of pruned tea (Camellia sinensis (L) O Kuntze). J Sci Food Agric 77:429–434

    Article  CAS  Google Scholar 

  • Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signaling in plant responses to abiotic stress. J Exp Biol 217:67–75

    Article  CAS  Google Scholar 

  • Fariduddin Q, Yusuf M, Ahmad I, Ahmad A (2014) Brassinosteroids and their role in response of plants to abiotic stresses. Biol Plantarum 58(1):9–17

    Article  CAS  Google Scholar 

  • Ghanati F, Ishkaa MR (2009) Investigation of the interaction between abscisic acid (ABA) and excess benzyladenine (BA) on the formation of shoot in tissue culture of tea (Camellia sinensis L.). Int J Plant Prod 3(4):7–14

    CAS  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2013) Gibberellins and abscisic acid signal crosstalk: living and developing under unfavorable conditions. Plant Cell Rep 32:1007–1016

    Article  CAS  Google Scholar 

  • Han WY, Huang JG, Li X, Li ZX, Ahammed GJ, Yan P, Stepp JR (2016) Altitudinal effects on the quality of green tea in East China: a climate change perspective. Eur Food Res Technol 243(2):1–8

    Google Scholar 

  • Han W, Li X, Yan P, Zhang L, Ahammed GJ (2018) Tea cultivation under changing climatic conditions. In: Global tea science current status and future needs. Burleigh Dodds Science Publishing, Cambridge, pp 455–472

    Google Scholar 

  • Hasegawa S, Sogabe Y, Asano T, Nakagawa T, Nakamura H, Kodama H, Ohta H, Yamaguchi K, Mueller MJ, Nishiuchi T (2011) Gene expression analysis of wounding-induced root-to-shoot communication in Arabidopsis thaliana. Plant Cell Environ 34:705–716

    Article  CAS  Google Scholar 

  • Hu Y et al (2013) Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arobidopsis. Plant Cell 25:2907–2924

    Article  CAS  Google Scholar 

  • Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S, Leonhardt N, Ellis BE, Murata Y, Kwak JM (2009) MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci U S A 106(48):20520–20525

    Article  CAS  Google Scholar 

  • Jeyaraj A, Chandran V, Gajjeraman P (2014) Differential expression of microRNAs in dormant bud of tea [Camellia sinensis (L.) O. Kuntze]. Plant Cell Rep 33:1053–1069

    Article  CAS  Google Scholar 

  • Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, Garrett WM, Kessenbrock M, Groth G, Tucker ML, Cooper B, Kieber JJ, Chang C (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci U S A 109:19486–19491

    Article  CAS  Google Scholar 

  • Kakkar RK, Nagar PK (1997) Distribution and changes in endogenous polyamines during winter dormancy in tea [Camellia sinensis L. (O) Kuntze]. J Plant Physiol 151:63–67

    Article  CAS  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20(4):219–229

    Article  CAS  Google Scholar 

  • Khan MIR, Khan NA (2014) Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PSII activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma 251:1007–1019

    Article  CAS  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Per TS, Khan NA (2013) Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav 8:e26374

    Article  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    PubMed  PubMed Central  Google Scholar 

  • Koch JR, Creelman RA, Eshita SM, Seskar M, Mullet JE, Davis KR et al (2000) Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation. Plant Physiol 123:487–496

    Article  CAS  Google Scholar 

  • Koshioka M, Yamaguchi S, Nishijima T, Yamazaki H, Ferraren D (1993) Endogenous gibberellins in the developing liquid endosperm of tea. Biosci Biotechnol Biochem 57:1586–1588

    Article  CAS  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748

    Article  CAS  Google Scholar 

  • Li X, Ahammed GJ, Li ZX, Zhang L, Wei JP, Shen C, Yan P, Zhang LP, Han WY (2016) Brassinosteroids improve quality of summer tea (Camellia sinensis L.) by balancing biosynthesis of polyphenols and amino acids. Front Plant Sci 7:1304

    PubMed  PubMed Central  Google Scholar 

  • Li X, Zhang L, Ahammed GJ, Li ZX, Wei JP, Shen C, Yan P, Zhang LP, Han WY (2017) Nitric oxide mediates brassinosteroid-induced flavonoid biosynthesis in Camellia sinensis L. J Plant Physiol 214:145–151

    Article  CAS  Google Scholar 

  • Li X, Ahammed GJ, Li Z-X, Zhang L, Wei J-P, Yan P, Zhang L-P, Han W-Y (2018a) Freezing stress deteriorates tea quality of new flush by inducing photosynthetic inhibition and oxidative stress in mature leaves. Sci Hortic Amsterd 230:155–160

    Article  CAS  Google Scholar 

  • Li X, Wei JP, Scott ER, Liu JW, Guo S, Li Y, Zhang L, Han WY (2018b) Exogenous melatonin alleviates cold stress by promoting antioxidant defense and redox homeostasis in Camellia sinensis L. Molecules 23(1):165

    Article  Google Scholar 

  • Liang Y, Lu J, Shang S (1996) Effect of gibberellins on chemical composition and quality of tea (Camellia sinensis L). J Sci Food Agric 72:411–414

    Article  CAS  Google Scholar 

  • Liu ZW, Wu ZJ, Li XH, Huang Y, Li H, Wang YX, Zhuang J (2016) Identification, classification, and expression profiles of heat shock transcription factors in tea plant (Camellia sinensis) under temperature stress. Gene 576:52–59

    Article  CAS  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2008) The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J 56:613–626

    Article  CAS  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5(2):4

    PubMed  PubMed Central  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96

    Article  CAS  Google Scholar 

  • Mohanpuria P, Yadav SK (2012) Characterization of novel small RNAs from tea (Camellia sinensis L.). Mol Biol Rep 39:3977–3986

    Article  CAS  Google Scholar 

  • Müller M, Munné-Bosch S (2015) Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol 169:32–41

    Article  Google Scholar 

  • Nagar PK, Kumar A (2000) Changes in endogenous gibberellin activity during winter dormancy in tea (Camellia sinensis (L.) O. Kuntze). Acta Physiol Plant 22(4):439–443

    Article  CAS  Google Scholar 

  • Nagar PK, Sood S (2006) Changes in endogenous auxins during winter dormancy in tea (Camellia sinensis L.) O. Kuntze. Acta Physiol Plant 28:165–169

    Article  CAS  Google Scholar 

  • Naser V, Shani E (2016) Auxin response under osmotic stress. Plant Mol Biol 91:661–672

    Article  CAS  Google Scholar 

  • Ogawa D, Nakajima N, Sano T, Tamaoki M, Aono M, Kubo A et al (2005) Salicylic acid accumulation under O3 exposure is regulated by ethylene in tobacco plants. Plant Cell Physiol 46:1062–1072

    Article  CAS  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  CAS  Google Scholar 

  • Popko J, Hänsch R, Mendel R-R, Polle A, Teichmann T (2010) The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biol 12:242–258

    Article  CAS  Google Scholar 

  • Rani A, Singh K, Ahuja PS, Kumar S (2012) Molecular regulation of catechins biosynthesis in tea [Camellia sinensis (L.) O. Kuntze]. Gene 495:205–210

    Article  CAS  Google Scholar 

  • Rao MV, Lee HI, Creelman RA, Mullet JE, Davis KR (2000) Jasmonate perception desensitizes O3-induced salicylic acid biosynthesis and programmed cell death in Arabidopsis. Plant Cell 12:1633–1646

    Article  CAS  Google Scholar 

  • Rasool S, Urwat U, Nazir M, Zargar SM, Zargar MY (2018) Cross talk between phytohormone signaling pathways under abiotic stress conditions and their metabolic engineering for conferring abiotic stress tolerance. In: Zargar SM, Zargar MY (eds) Abiotic stress-mediated sensing and signaling. in plants: an Omics perspective. Springer, Singapore. https://doi.org/10.1007/978-981-10-7479-0_12

    Chapter  Google Scholar 

  • Riemann M, Dhakarey R, Hazman M, Miro B, Kohli A, Nick P (2015) Exploring jasmonates in the hormonal network of drought and salinity responses. Front Plant Sci 6:1077

    Article  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    Article  Google Scholar 

  • Šamajová O, Plíhal O, Al-Yousif M, Hirt H, Šamaj J (2013) Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotechnol Adv 31(1):118–128

    Article  Google Scholar 

  • Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim JK, Choi YD (2011) OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J 65:907–921

    Article  CAS  Google Scholar 

  • Shi J, Wang L, Ma CY, Lv HP, Chen ZM, Lin Z (2014) Aroma changes of black tea prepared from methyl jasmonate treated tea plants. J Zhejiang Univ Sci B 15:313–321. https://doi.org/10.1631/jzus.B1300238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh K, Kumar S, Rani A, Gulati A, Ahuja PS (2009) Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea. Funct Integr Genomics 9:125–134

    Article  CAS  Google Scholar 

  • Skubacz A, Daszkowska-Golec A, Szarejko I (2016) The role and regulation of ABI5 (ABA-insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk. Front Plant Sci 7:1884

    Article  Google Scholar 

  • Smékalová V, Doslcočilová A, Komis G, Samaj J (2014) Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol Adv 32:2–11

    Article  Google Scholar 

  • Smigocki AC, Owens LD (1989) Cytokinin-to-auxin ratios and morphology of shoots and tissues transformed by a chimeric isopentenyl transferase gene. Plant Physiol 91:808–811

    Article  CAS  Google Scholar 

  • Steffens B (2014) The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice. Front Plant Sci 5:685

    Article  Google Scholar 

  • Sun P, Tian QY, Chen J, Zhang WH (2010) Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin. J Exp Bot 61:347–356

    Article  CAS  Google Scholar 

  • Tao JJ, Chen HW, Ma B, Zhang WK, Chen SY, Zhang JS (2015) The role of ethylene in plants under salinity stress. Front Plant Sci 6:1059

    Article  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    Article  CAS  Google Scholar 

  • Thao NP, Khan MIR, Thu NBA, Hoang XLT, Asgher M, Khan NA, Tran L-SP (2015) Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress. Plant Physiol 169:73–84

    Article  Google Scholar 

  • Trinh NN, Huang TL, Chi WC, Fu SF, Chen CC, Huang HJ (2014) Chromium stress response effect on signal transduction and expression of signaling genes in rice. Physiol Plant 150:205–224

    Article  CAS  Google Scholar 

  • Upadhyaya H, Dutta BK, Panda SK (2013) Zinc modulates drought induced biochemical damages in tea (C. sinensis (L) O Kuntze). J Agric Food Chem 61(27):6660–6670

    Article  CAS  Google Scholar 

  • Verslues PE (2016) ABA and cytokinins: challenge and opportunity for plant stress research. Plant Mol Biol 91:629–640

    Article  CAS  Google Scholar 

  • Wang Y, Jiang CJ, Li YY, Wei CL, Deng WW (2012) CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis. Plant Cell Rep 31:27–34

    Article  Google Scholar 

  • Wang XC, Zhao QY, Ma CL, Zhang ZH, Cao HL, Kong YM, Yue C, Hao XY, Chen L, Ma JQ, Jin JQ, Li X, Yang YJ (2013) Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics 14:415

    Article  Google Scholar 

  • Wang W, Xin H, Wang M, Ma Q, Wang L, Kaleri NA, Wang Y, Li X (2016) Transcriptomic analysis reveals the molecular mechanisms of drought-stress-induced decreases in Camellia sinensis leaf quality. Front Plant Sci 7:385

    PubMed  PubMed Central  Google Scholar 

  • Wang L, Cao H, Qian W, Yao L, Hao X, Li N, Yang Y, Wang X (2017) Identification of a novel bZIP transcription factor in Camellia sinensis as a negative regulator of freezing tolerance in transgenic arabidopsis. Ann Bot London 119(7):1195–1209

    Article  Google Scholar 

  • Wei K, Wang LY, Wu LY, Zhang CC, Li HL, Tan LQ, Cao HL, Cheng H (2014) Transcriptome analysis of Indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.). Plos One 9:e107201

    Article  Google Scholar 

  • Wu ZJ, Li XH, Liu ZW, Li H, Wang YX, Zhuang J (2015) Transcriptome-based discovery of AP2/ERF transcription factors related to temperature stress in tea plant (Camellia sinensis). Funct Integr Genomics 15:741–752

    Article  CAS  Google Scholar 

  • Xing Y, Jia W, Zhang J (2008) AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J 54:440–451

    Article  CAS  Google Scholar 

  • Yin Y, Ma Q, Zhu Z, Cui Q, Chen C, Chen X, Fang W, Li X (2016) Functional analysis of CsCBF3 transcription factor in tea plant (Camellia sinensis) under cold stress. Plant Growth Regul 80:335–343

    Article  CAS  Google Scholar 

  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139

    Article  CAS  Google Scholar 

  • Zelicourt A, Colcombet J, Hirt H (2016) The role of MAPK modules and ABA during abiotic stress signaling. Trends Plant Sci 21(8):677–685

    Article  Google Scholar 

  • Zheng C, Wang Y, Ding Z, Zhao L (2016) Global transcriptional analysis reveals the complex relationship between tea quality, leaf senescence and the responses to cold-drought combined stress in Camellia sinensis. Front Plant Sci 7:1858

    PubMed  PubMed Central  Google Scholar 

  • Zhou L, Xu H, Mischke S, Meinhardt LW, Zhang D, Zhu X, Li X, Fang W (2014) Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress. Hortic Res 1:14029

    Article  Google Scholar 

  • Zwack PJ, Rashotte AM (2015) Interactions between cytokinin signalling and abiotic stress responses. J Exp Bot 66(16):4863–4871

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research in the authors’ laboratories is supported by grants from the Key Project of International Science & Technology Cooperation, National Key Research and Development Programme of China (2017YFE0107500), the Open Fund of State Key Laboratory of Tea Plant Biology and Utilization (SKLTOF20170106), the Innovation Project of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2015-TRICAAS-08), Henan University of Science and Technology (HAUST) Research Start-up Fund for New Faculty (13480058), the National Natural Science Foundation of China (31600561), and the Central Public-interest Scientific Institution Basal Research Fund (1610212016013, 1610212018015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Yan Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, L., Ahammed, G.J., Li, X., Yan, P., Zhang, L., Han, WY. (2018). Plant Hormones as Mediators of Stress Response in Tea Plants. In: Han, WY., Li, X., Ahammed, G. (eds) Stress Physiology of Tea in the Face of Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-13-2140-5_12

Download citation

Publish with us

Policies and ethics