Skip to main content

Phase Control of TiO2 Photocatalyst

  • Chapter
  • First Online:
Photocatalysis

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 100))

  • 2998 Accesses

Abstract

TiO2 that exists in different phases such as anatase, rutile, and brookite is one of the most promising photocatalysts. These phases show different properties and photocatalytic performances. It is well known that mixed-phase TiO2 has enhanced photocatalytic activity compared to pure-phase TiO2. In the past two decades, many research works focusing on the synthesis of different kinds of mixed-phase TiO2 and their applications to photocatalysis have been done. In this chapter, we introduce three main types of TiO2 phases as mentioned above, containing their structural properties, stability, phase transformation, and photocatalytic activity. Then we pay more attention to the synthesis of the mixed-phase TiO2 and detailedly introduce six preparation methods, which are hydrothermal method, solvothermal method, microemulsion-mediated solvothermal method, sol–gel method, solvent mixing and calcination method, and high-temperature calcination method. After that, we comprehensively highlight three different kinds of applications of the mixed-phase TiO2 in the photocatalysis field, including photocatalytic production of hydrogen, reduction of CO2 with water, and degradation of organic pollutants. As the photocatalytic activity of the mixed-phase TiO2 is usually higher than the single-phase TiO2, we discuss the mechanism for the enhancing effects of the mixed phases. Due to the limit of the present science and technology, the challenges of mixed-phase TiO2 still remain. In the end, we summarize the existing problems of this kind of nanomaterials and put its application prospects forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  CAS  PubMed  Google Scholar 

  2. Carey JH, Lawrence J, Tosine HM (1976) Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions. Bull Environ Contam Toxicol 16(6):697–701

    Article  CAS  PubMed  Google Scholar 

  3. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 52(29):7372–7408

    Article  CAS  Google Scholar 

  4. Hu K, Robson KC, Johansson PG et al (2012) Intramolecular hole transfer at sensitized TiO2 interfaces. J Am Chem Soc 134(20):8352–8355

    Article  CAS  PubMed  Google Scholar 

  5. Guo Q, Xu C, Ren Z et al (2012) Stepwise photocatalytic dissociation of methanol and water on TiO2 (110). J Am Chem Soc 134(32):13366–13373

    Article  CAS  PubMed  Google Scholar 

  6. Tian B, Chen F, Zhang J et al (2006) Influences of acids and salts on the crystalline phase and morphology of TiO2 prepared under ultrasound irradiation. J Colloid Interface Sci 303(1):142–148

    Article  CAS  PubMed  Google Scholar 

  7. Tomkiewicz M, Dagan G, Zhu Z (1994) Morphology and photocatalytic activity of TiO2 aerogels. Res Chem Intermed 20(7):701–710

    Article  CAS  Google Scholar 

  8. Zhu S, Xie G, Yang X et al (2013) A thick hierarchical rutile TiO2 nanomaterial with multilayered structure. Mater Res Bull 48(5):1961–1966

    Article  CAS  Google Scholar 

  9. Beuvier T, Richard-Plouet M, Mancini-Le Granvalet M et al (2010) TiO2 (B) nanoribbons as negative electrode material for lithium ion batteries with high rate performance. Inorg Chem 49(18):8457–8464

    Article  CAS  PubMed  Google Scholar 

  10. Xin X, Scheiner M, Ye M et al (2011) Surface-treated TiO2 nanoparticles for dye-sensitized solar cells with remarkably enhanced performance. Langmuir 27(23):14594–14598

    Article  CAS  PubMed  Google Scholar 

  11. Hosono E, Fujihara S, Imai H et al (2007) One-step synthesis of nano–micro chestnut TiO2 with rutile nanopins on the microanatase octahedron. ACS Nano 1(4):273–278

    Article  CAS  PubMed  Google Scholar 

  12. Sinha AK, Jana S, Pande S et al (2009) New hydrothermal process for hierarchical TiO2 nanostructures. Cryst Eng Comm 11(7):1210–1212

    Article  CAS  Google Scholar 

  13. Cheng QQ, Cao Y, Yang L et al (2011) Synthesis and photocatalytic activity of titania microspheres with hierarchical structures. Mater Res Bull 46(3):372–377

    Article  CAS  Google Scholar 

  14. Wang Y, Zhang L, Deng K et al (2007) Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructures. J Phys Chem C 111(6):2709–2714

    Article  CAS  Google Scholar 

  15. Wei J, Yao J, Zhang X et al (2007) Hydrothermal growth of titania nanostructures with tunable phase and shape. Mater Lett 61(23):4610–4613

    Article  CAS  Google Scholar 

  16. Hu YH (2012) A highly efficient photocatalyst—hydrogenated black TiO2 for the photocatalytic splitting of water. Angew Chem Int Ed 51(50):12410–12412

    Article  CAS  Google Scholar 

  17. Oh JK, Lee JK, Kim HS et al (2010) TiO2 branched nanostructure electrodes synthesized by seeding method for dye-sensitized solar cells. Chem Mater 22(3):1114–1118

    Article  CAS  Google Scholar 

  18. Ye M, Liu HY, Lin C et al (2013) Hierarchical rutile TiO2 flower cluster-based high efficiency dye-sensitized solar cells via direct hydrothermal growth on conducting substrates. Small 9(2):312–321

    Article  CAS  PubMed  Google Scholar 

  19. Si P, Ding S, Yuan J et al (2011) Hierarchically structured one-dimensional TiO2 for protein immobilization, direct electrochemistry, and mediator-free glucose sensing. ACS Nano 5(9):7617–7626

    Article  CAS  PubMed  Google Scholar 

  20. Etgar L, Gao P, Xue Z et al (2012) Mesoscopic CH3 NH3 PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 134(42):17396–17399

    Article  CAS  PubMed  Google Scholar 

  21. Guo W, Xu C, Wang X et al (2012) Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells. J Am Chem Soc 134(9):4437–4441

    Article  CAS  PubMed  Google Scholar 

  22. Wang YQ, Gu L, Guo YG et al (2012) Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J Am Chem Soc 134(18):7874–7879

    Article  CAS  PubMed  Google Scholar 

  23. So S, Lee K, Schmuki P (2012) Ultrafast growth of highly ordered anodic TiO2 nanotubes in lactic acid electrolytes. J Am Chem Soc 134(28):11316–11318

    Article  CAS  PubMed  Google Scholar 

  24. Wang WN, An WJ, Ramalingam B et al (2012) Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J Am Chem Soc 134(27):11276–11281

    Article  CAS  PubMed  Google Scholar 

  25. Leghari SAK, Sajjad S, Chen F et al (2011) WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst. Chem Eng J 166(3):906–915

    Article  CAS  Google Scholar 

  26. Chen F, Zou W, Qu W et al (2009) Photocatalytic performance of a visible light TiO2 photocatalyst prepared by a surface chemical modification process. Catal Commun 10(11):1510–1513

    Article  CAS  Google Scholar 

  27. Xing M, Zhang J, Chen F (2009) New approaches to prepare nitrogen-doped TiO2 photocatalysts and study on their photocatalytic activities in visible light. Appl Catal B Environ 89(3):563–569

    Article  CAS  Google Scholar 

  28. Kim TH, Gómez-Solís C, Moctezuma E et al (2014) Sonochemical synthesis of Fe–TiO2–SiC composite for degradation of rhodamine B under solar simulator. Res Chem Intermed 40(4):1595–1605

    Article  CAS  Google Scholar 

  29. Zuo F, Wang L, Wu T et al (2010) Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J Am Chem Soc 132(34):11856–11857

    Article  CAS  PubMed  Google Scholar 

  30. Kim YJ, Lee MH, Kim HJ et al (2009) Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Adv Mater 21(36):3668–3673

    Article  CAS  Google Scholar 

  31. Liu S, Li Q, Hou C et al (2013) Hierarchical nitrogen and cobalt co-doped TiO2 prepared by an interface-controlled self-aggregation process. J Alloys Compd 575:128–136

    Article  CAS  Google Scholar 

  32. Cai M, Pan X, Liu W et al (2013) Multiple adsorption of tributyl phosphate molecule at the dyed-TiO2/electrolyte interface to suppress the charge recombination in dye-sensitized solar cell. J Mater Chem A 1(15):4885–4892

    Article  CAS  Google Scholar 

  33. Liang MS, Khaw CC, Liu CC et al (2013) Synthesis and characterisation of thin-film TiO2 dye-sensitised solar cell. Ceram Int 39(2):1519–1523

    Article  CAS  Google Scholar 

  34. Kim H, Hwang YH, Cho G et al (2011) Partially dyed-TiO2 dispersions for adaptation to the continuous fabrication of photoanodes. Electrochim Acta 56(25):9476–9481

    Article  CAS  Google Scholar 

  35. Zhang C, Huang Y, Chen S et al (2012) Photoelectrochemical analysis of the dyed TiO2/electrolyte interface in long-term stability of dye-sensitized solar cells. J Phys Chem C 116(37):19807–19813

    Article  CAS  Google Scholar 

  36. Bae EG, Kim H, Hwang YH et al (2012) Genetic algorithm-assisted optimization of partially dyed-TiO2 for room-temperature printable photoanodes of dye-sensitized solar cells. J Mater Chem 22(2):551–556

    Article  CAS  Google Scholar 

  37. Ashkarran AA, Ghavamipour M, Hamidinezhad H et al (2015) Enhanced visible light-induced hydrophilicity in sol–gel-derived Ag–TiO2 hybrid nanolayers. Res Chem Intermed 41(10):7299–7311

    Article  CAS  Google Scholar 

  38. Haruta M, Uphade BS, Tsubota S et al (1998) Selective oxidation of propylene over gold deposited on titanium-based oxides. Res Chem Intermed 24(3):329–336

    Article  CAS  Google Scholar 

  39. Tian B, Zhang J, Tong T et al (2008) Preparation of Au/TiO2 catalysts from Au (I)–thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange. Appl Catal B Environ 79(4):394–401

    Article  CAS  Google Scholar 

  40. Wu Y, Liu H, Zhang J et al (2009) Enhanced photocatalytic activity of nitrogen-doped titania by deposited with gold. J Phys Chem C 113(33):14689–14695

    Article  CAS  Google Scholar 

  41. Wang W, Zhang J, Chen F et al (2010) Catalysis of redox reactions by Ag@TiO2 and Fe3+-doped Ag@TiO2 core–shell type nanoparticles. Res Chem Intermed 36(2):163–172

    Article  CAS  Google Scholar 

  42. Wang Y, Feng C, Zhang M et al (2010) Enhanced visible light photocatalytic activity of N-doped TiO2 in relation to single-electron-trapped oxygen vacancy and doped-nitrogen. Appl Catal B Environ 100(1):84–90

    Article  CAS  Google Scholar 

  43. Feng C, Wang Y, Zhang J et al (2012) The effect of infrared light on visible light photocatalytic activity: an intensive contrast between Pt-doped TiO2 and N-doped TiO2. Appl Catal B Environ 113:61–71

    Article  CAS  Google Scholar 

  44. Charanpahari A, Umare SS, Gokhale SP et al (2012) Enhanced photocatalytic activity of multi-doped TiO2 for the degradation of methyl orange. Appl Catal A Gen 443:96–102

    Article  CAS  Google Scholar 

  45. Tian B, Li C, Gu F et al (2009) Synergetic effects of nitrogen doping and Au loading on enhancing the visible-light photocatalytic activity of nano-TiO2. Catal Commun 10(6):925–929

    Article  CAS  Google Scholar 

  46. Zhang P, Shao C, Li X et al (2012) In situ assembly of well-dispersed Au nanoparticles on TiO2/ZnO nanofibers: a three-way synergistic heterostructure with enhanced photocatalytic activity. J Hazard Mater 237:331–338

    Article  PubMed  CAS  Google Scholar 

  47. Zhang Z, Yuan Y, Liang L et al (2008) Preparation and photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO2 nanotube arrays electrode for azo dye degradation. J Hazard Mater 158(2):517–522

    Article  CAS  PubMed  Google Scholar 

  48. Chattopadhyaya G, Macdonald DG, Bakhshi NN et al (2006) Removal of nitric oxide over Saskatchewan lignite and its derivatives. Catal Lett 108(1):1–5

    Article  CAS  Google Scholar 

  49. Yang M, Men Y, Li S et al (2012) Enhancement of catalytic activity over TiO2-modified Al2O3 and ZnO–Cr2O3 composite catalyst for hydrogen production via dimethyl ether steam reforming. Appl Catal A Gen 433:26–34

    Article  CAS  Google Scholar 

  50. Su R, Bechstein R, Sø L et al (2011) How the anatase-to-rutile ratio influences the photoreactivity of TiO2. J Phys Chem C 115(49):24287–24292

    Article  CAS  Google Scholar 

  51. Hurum DC, Agrios AG, Gray KA et al (2003) Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107(19):4545–4549

    Article  CAS  Google Scholar 

  52. Scotti R, Bellobono IR, Canevali C et al (2008) Sol−gel pure and mixed-phase titanium dioxide for photocatalytic purposes: relations between phase composition, catalytic activity, and charge-trapped sites. Chem Mater 20(12):4051–4061

    Article  CAS  Google Scholar 

  53. Puddu V, Choi H, Dionysiou DD et al (2010) TiO2 photocatalyst for indoor air remediation: influence of crystallinity, crystal phase, and UV radiation intensity on trichloroethylene degradation. Appl Catal B Environ 94(3):211–218

    Article  CAS  Google Scholar 

  54. Zheng R, Meng X, Tang F (2009) Synthesis, characterization and photodegradation study of mixed-phase titania hollow submicrospheres with rough surface. Appl Surf Sci 255(11):5989–5994

    Article  CAS  Google Scholar 

  55. Jiao Y, Chen F, Zhao B et al (2012) Anatase grain loaded brookite nanoflower hybrid with superior photocatalytic activity for organic degradation. Colloids Surf A Physicochem Eng Asp 402:66–71

    Article  CAS  Google Scholar 

  56. Di Paola A, Cufalo G, Addamo M et al (2008) Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions. Colloids Surf A Physicochem Eng Asp 317(1):366–376

    Article  CAS  Google Scholar 

  57. Li W, Liu C, Zhou Y et al (2008) Enhanced photocatalytic activity in anatase/TiO2 (B) core−shell nanofiber. J Phys Chem C 112(51):20539–20545

    Article  CAS  Google Scholar 

  58. Hanaor DA, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46(4):855–874

    Article  CAS  Google Scholar 

  59. Gamboa JA, Pasquevich DM (1992) Effect of chlorine atmosphere on the anatase-rutile transformation. J Am Ceram Soc 75(11):2934–2938

    Article  CAS  Google Scholar 

  60. Ding XZ, He YZ (1996) Study of the room temperature ageing effect on structural evolution of gel-derived nanocrystalline titania powders. J Mater Sci Lett 15(4):320–322

    Article  CAS  Google Scholar 

  61. Muscat J, Swamy V, Harrison NM (2002) First-principles calculations of the phase stability of TiO2. Phys Rev B 65(22):224–112

    Article  CAS  Google Scholar 

  62. Arlt T, Bermejo M, Blanco MA et al (2000) High-pressure polymorphs of anatase TiO2. Phys Rev B 61(21):14414–14419

    Article  CAS  Google Scholar 

  63. Ren R, Yang Z, Shaw LL (2000) Polymorphic transformation and powder characteristics of TiO2 during high energy milling. J Mater Sci 35(23):6015–6026

    Article  CAS  Google Scholar 

  64. Dubrovinskaia NA, Dubrovinsky LS, Ahuja R et al (2001) Experimental and theoretical identification of a new high-pressure TiO2 polymorph. Phys Rev Lett 87(27):455–475

    Article  CAS  Google Scholar 

  65. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5):53–229

    Article  CAS  Google Scholar 

  66. Yan M, Chen F, Zhang J et al (2005) Preparation of controllable crystalline titania and study on the photocatalytic properties. J Phys Chem B 109(18):8673–8678

    Article  CAS  PubMed  Google Scholar 

  67. Li Y, White TJ, Lim SH (2004) Low-temperature synthesis and microstructural control of titania nano-particles. J Solid State Chem 177(4):1372–1381

    Article  CAS  Google Scholar 

  68. Khataee AR, Kasiri MB (2010) Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes. J Mol Catal A Chem 328(1):8–26

    Article  CAS  Google Scholar 

  69. Daneshvar N, Rasoulifard MH, Khataee AR et al (2007) Removal of CI acid orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder. J Hazard Mater 143(1):95–101

    Article  CAS  PubMed  Google Scholar 

  70. Moret MP, Zallen R, Vijay DP et al (2000) Brookite-rich titania films made by pulsed laser deposition. Thin Solid Films 366(1):8–10

    Article  CAS  Google Scholar 

  71. Shannon RD, Pask JA (1965) Kinetics of the anatase-rutile transformation. J Am Ceram Soc 48(8):391–398

    Article  CAS  Google Scholar 

  72. Batzill M, Morales EH, Diebold U (2006) Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. Phys Rev Lett 96(2):026–103

    Article  CAS  Google Scholar 

  73. Oskam G, Nellore A, Penn RL et al (2003) The growth kinetics of TiO2 nanoparticles from titanium (IV) alkoxide at high water/titanium ratio. J Phys Chem B 107(8):1734–1738

    Article  CAS  Google Scholar 

  74. Banfield J (1998) Thermodynamic analysis of phase stability of nanocrystalline titania. J Mater Chem 8(9):2073–2076

    Article  Google Scholar 

  75. Li JG, Ishigaki T, Sun X (2007) Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: phase-selective synthesis and physicochemical properties. J Phys Chem C 111(13):4969–4976

    Article  CAS  Google Scholar 

  76. Bickley RI, Gonzalez-Carreno T, Lees JS et al (1991) A structural investigation of titanium dioxide photocatalysts. J Solid State Chem 92(1):178–190

    Article  CAS  Google Scholar 

  77. Lee SK, Robertson PK, Mills A et al (1999) Modification and enhanced photocatalytic activity of TiO2 following exposure to non-linear irradiation sources. J Photochem Photobiol A Chem 122(1):69–71

    Article  CAS  Google Scholar 

  78. Tsai SJ, Cheng S (1997) Effect of TiO2 crystalline structure in photocatalytic degradation of phenolic contaminants. Catal Today 33(1–3):227–237

    Article  CAS  Google Scholar 

  79. Ohno T, Sarukawa K, Matsumura M (2001) Photocatalytic activities of pure rutile particles isolated from TiO2 powder by dissolving the anatase component in HF solution. J Phys Chem B 105(12):2417–2420

    Article  CAS  Google Scholar 

  80. Ozawa T, Iwasaki M, Tada H et al (2005) Low-temperature synthesis of anatase–brookite composite nanocrystals: the junction effect on photocatalytic activity. J Colloid Interface Sci 281(2):510–513

    Article  CAS  PubMed  Google Scholar 

  81. Xu H, Zhang L (2009) Controllable one-pot synthesis and enhanced photocatalytic activity of mixed-phase TiO2 nanocrystals with tunable brookite/rutile ratios. J Phys Chem C 113(5):1785–1790

    Article  CAS  Google Scholar 

  82. Bacsa RR, Kiwi J (1998) Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. Appl Catal B Environ 16(1):19–29

    Article  CAS  Google Scholar 

  83. Jung KY, Park SB, Jang HD (2004) Phase control and photocatalytic properties of nano-sized titania particles by gas-phase pyrolysis of TiCl4. Catal Commun 5(9):491–497

    Article  CAS  Google Scholar 

  84. Zhu J, Zheng W, He B et al (2004) Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J Mol Catal A Chem 216(1):35–43

    Article  CAS  Google Scholar 

  85. Wu Y, Xing M, Zhang J (2011) Gel-hydrothermal synthesis of carbon and boron co-doped TiO2 and evaluating its photocatalytic activity. J Hazard Mater 192(1):368–373

    CAS  PubMed  Google Scholar 

  86. Ng J, Wang X, Sun DD (2011) One-pot hydrothermal synthesis of a hierarchical nanofungus-like anatase TiO2 thin film for photocatalytic oxidation of bisphenol A. Appl Catal B Environ 110:260–272

    Article  CAS  Google Scholar 

  87. Ovenstone J, Yanagisawa K (1999) Effect of hydrothermal treatment of amorphous titania on the phase change from anatase to rutile during calcination. Chem Mater 11(10):2770–2774

    Article  CAS  Google Scholar 

  88. Li G, Ciston S, Saponjic ZV et al (2008) Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications. J Catal 253(1):105–110

    Article  CAS  Google Scholar 

  89. Fehse M, Fischer F, Tessier C et al (2013) Tailoring of phase composition and morphology of TiO2-based electrode materials for lithium-ion batteries. J Power Sources 231:23–28

    Article  CAS  Google Scholar 

  90. Zhang Y, Chen J, Li X (2010) Preparation and photocatalytic performance of anatase/rutile mixed-phase TiO2 nanotubes. Catal Lett 139(3–4):129–133

    Article  CAS  Google Scholar 

  91. Tay Q, Liu X, Tang Y et al (2013) Enhanced photocatalytic hydrogen production with synergistic two-phase anatase/brookite TiO2 nanostructures. J Phys Chem C 117(29):14973–14982

    Article  CAS  Google Scholar 

  92. Zhang H, Banfield JF (2000) Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J Phys Chem B 104(15):3481–3487

    Article  CAS  Google Scholar 

  93. Shen X, Tian B, Zhang J (2013) Tailored preparation of titania with controllable phases of anatase and brookite by an alkalescent hydrothermal route. Catal Today 201:151–158

    Article  CAS  Google Scholar 

  94. Zhao B, Chen F, Huang Q et al (2009) Brookite TiO2 nanoflowers. Chem Commun 34:5115–5117

    Article  CAS  Google Scholar 

  95. Zhao LM, Zhang ZJ, Zhang SY et al (2011) Metal–organic frameworks based on transition-metal carboxylate clusters as secondary building units: synthesis, structures and properties. CrystEngComm 13(3):907–913

    Article  CAS  Google Scholar 

  96. Zhao B, Chen F, Jiao Y et al (2010) Phase transition and morphological evolution of titania/titanate nanomaterials under alkalescent hydrothermal treatment. J Mater Chem 20(37):7990–7997

    Article  CAS  Google Scholar 

  97. Shen X, Zhang J, Tian B (2012) Tartaric acid-assisted preparation and photocatalytic performance of titania nanoparticles with controllable phases of anatase and brookite. J Mater Sci 47(15):5743–5751

    Article  CAS  Google Scholar 

  98. Cheng H, Ma J, Zhao Z et al (1995) Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem Mater 7(4):663–671

    Article  CAS  Google Scholar 

  99. Li G, Gray KA (2007) Preparation of mixed-phase titanium dioxide nanocomposites via solvothermal processing. Chem Mater 19(5):1143–1146

    Article  CAS  Google Scholar 

  100. Lei SHI, Duan WENG (2008) Highly active mixed-phase TiO2 photocatalysts fabricated at low temperature and the correlation between phase composition and photocatalytic activity. J Environ Sci 20(10):1263–1267

    Article  Google Scholar 

  101. Wu M, Long J, Huang A et al (1999) Microemulsion-mediated hydrothermal synthesis and characterization of nanosize rutile and anatase particles. Langmuir 15(26):8822–8825

    Article  CAS  Google Scholar 

  102. Shen X, Zhang J, Tian B (2011) Microemulsion-mediated solvothermal synthesis and photocatalytic properties of crystalline titania with controllable phases of anatase and rutile. J Hazard Mater 192(2):651–657

    Article  CAS  PubMed  Google Scholar 

  103. Zachariah A, Priya R, Baiju KV, Shukla S et al (2008) Synergistic effect in photocatalysis as observed for mixed-phase nanocrystalline titania processed via sol-gel solvent mixing and calcination. J Phys Chem C 112:11345–11356

    Article  CAS  Google Scholar 

  104. Bojinova A, Kralchevska R, Poulios I et al (2007) Anatase/rutile TiO2 composites: influence of the mixing ratio on the photocatalytic degradation of malachite green and orange II in slurry. Mater Chem Phys 106(2):187–192

    Article  CAS  Google Scholar 

  105. Liu Z, Zhang X, Nishimoto S et al (2007) Anatase TiO2 nanoparticles on rutile TiO2 nanorods: a heterogeneous nanostructure via layer-by-layer assembly. Langmuir 23(22):10916–10919

    Article  CAS  PubMed  Google Scholar 

  106. Nair RG, Paul S, Samdarshi SK (2011) High UV/visible light activity of mixed phase titania: a generic mechanism. Sol Energy Mater Sol Cells 95(7):1901–1907

    Article  CAS  Google Scholar 

  107. Gouma PI, Mills MJ (2001) Anatase-to-rutile transformation in titania powders. J Am Ceram Soc 84(3):619–622

    Article  CAS  Google Scholar 

  108. Zhang J, Li M, Feng Z et al (2006) UV Raman spectroscopic study on TiO2 I. Phase transformation at the surface and in the bulk. J Phys Chem B 110(2):927–935

    Article  CAS  PubMed  Google Scholar 

  109. Hsu YC, Lin HC, Chen CH et al (2010) Nonaqueous seeded growth of flower-like mixed-phase titania nanostructures for photocatalytic applications. J Solid State Chem 183(9):1917–1924

    Article  CAS  Google Scholar 

  110. Ni M, Leung MK, Leung DY et al (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11(3):401–425

    Article  CAS  Google Scholar 

  111. Lei J, Li H, Zhang J et al (2016) Mixed-phase TiO2 nanomaterials as efficient photocatalysts. In: Low-dimensional and nanostructured materials and devices. Springer International Publishing, Cham, pp 423–460

    Chapter  Google Scholar 

  112. Xu Q, Ma Y, Zhang J et al (2011) Enhancing hydrogen production activity and suppressing CO formation from photocatalytic biomass reforming on Pt/TiO2 by optimizing anatase–rutile phase structure. J Catal 278(2):329–335

    Article  CAS  Google Scholar 

  113. Kho YK, Iwase A, Teoh WY et al (2010) Photocatalytic H2 evolution over TiO2 nanoparticles. The synergistic effect of anatase and rutile. J Phys Chem C 114(6):2821–2829

    Article  CAS  Google Scholar 

  114. Xu F, Xiao W, Cheng B et al (2014) Direct Z-scheme anatase/rutile bi-phase nanocomposite TiO2 nanofiber photocatalyst with enhanced photocatalytic H2-production activity. Int J Hydrog Energy 39(28):15394–15402

    Article  CAS  Google Scholar 

  115. Rosseler O, Shankar MV, Karkmaz-Le Du M et al (2010) Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2 (anatase/rutile) photocatalysts: influence of noble metal and porogen promotion. J Catal 269(1):179–190

    Article  CAS  Google Scholar 

  116. Marcı G, Addamo M, Augugliaro V et al (2003) Photocatalytic oxidation of toluene on irradiated TiO2: comparison of degradation performance in humidified air, in water and in water containing a zwitterionic surfactant. J Photochem Photobiol A Chem 160(1):105–114

    Article  CAS  Google Scholar 

  117. Liu L, Zhao H, Andino JM et al (2012) Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal 2(8):1817–1828

    Article  CAS  Google Scholar 

  118. Zhao H, Liu L, Andino JM et al (2013) Bicrystalline TiO2 with controllable anatase–brookite phase content for enhanced CO2 photoreduction to fuels. J Mater Chem A 1(28):8209–8216

    Article  CAS  Google Scholar 

  119. Frank NS, Bard AJ (1977) Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J Am Chem Soc 99(1):303–304

    Article  CAS  Google Scholar 

  120. Xu H, Li G, Zhu G et al (2015) Enhanced photocatalytic degradation of rutile/anatase TiO2 heterojunction nanoflowers. Catal Commun 62:52–56

    Article  CAS  Google Scholar 

  121. Luo Z, Poyraz AS, Kuo CH et al (2015) Crystalline mixed phase (anatase/rutile) mesoporous titanium dioxides for visible light photocatalytic activity. Chem Mater 27(1):6–17

    Article  CAS  Google Scholar 

  122. Zhao B, Chen F, Jiao Y et al (2011) Ag 0-loaded brookite/anatase composite with enhanced photocatalytic performance towards the degradation of methyl orange. J Mol Catal A Chem 348(1):114–119

    Article  CAS  Google Scholar 

  123. Liao Y, Que W, Jia Q et al (2012) Controllable synthesis of brookite/anatase/rutile TiO2 nanocomposites and single-crystalline rutile nanorods array. J Mater Chem 22(16):7937–7944

    Article  CAS  Google Scholar 

  124. Grabowska E, Reszczyńska J, Zaleska A (2012) Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: a review. Water Res 46(17):5453–5471

    Article  CAS  PubMed  Google Scholar 

  125. Ding Z, Lu GQ, Greenfield PF (2000) Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J Phys Chem B 104(19):4815–4820

    Article  CAS  Google Scholar 

  126. Tian B, Li C, Zhang J (2012) One-step preparation, characterization and visible-light photocatalytic activity of Cr-doped TiO2 with anatase and rutile bicrystalline phases. Chem Eng J 191:402–409

    Article  CAS  Google Scholar 

  127. Deák P, Aradi B, Frauenheim T (2011) Band lineup and charge carrier separation in mixed rutile-anatase systems. J Phys Chem C 115(8):3443–3446

    Article  CAS  Google Scholar 

  128. Scanlon DO, Dunnill CW, Buckeridge J et al (2013) Band alignment of rutile and anatase TiO2. Nat Mater 12(9):798–801

    Article  CAS  PubMed  Google Scholar 

  129. Datye AK, Riegel G, Bolton JR et al (1995) Microstructural characterization of a fumed titanium dioxide photocatalyst. J Solid State Chem 115(1):236–239

    Article  CAS  Google Scholar 

  130. Zhang Z, Wang CC, Zakaria R et al (1998) Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B 102(52):10871–10878

    Article  CAS  Google Scholar 

  131. Ohno T, Sarukawa K, Tokieda K et al (2001) Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J Catal 203(1):82–86

    Article  CAS  Google Scholar 

  132. Kawahara T, Konishi Y, Tada H et al (2002) A patterned TiO2 (anatase)/TiO2 (rutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity. Angew Chem 114(15):2935–2937

    Article  Google Scholar 

  133. Li G, Gray KA (2007) The solid–solid interface: explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials. Chem Phys 339(1):173–187

    Article  CAS  Google Scholar 

  134. Sun B, Vorontsov AV, Smirniotis PG (2003) Role of platinum deposited on TiO2 in phenol photocatalytic oxidation. Langmuir 19(8):3151–3156

    Article  CAS  Google Scholar 

  135. Sun B, Smirniotis PG (2003) Interaction of anatase and rutile TiO2 particles in aqueous photooxidation. Catal Today 88(1):49–59

    Article  CAS  Google Scholar 

  136. Liu B, Peng L (2013) Facile formation of mixed phase porous TiO2 nanotubes and enhanced visible-light photocatalytic activity. J Alloys Compd 571:145–152

    Article  CAS  Google Scholar 

  137. Li G, Chen L, Graham ME et al (2007) A comparison of mixed phase titania photocatalysts prepared by physical and chemical methods: the importance of the solid–solid interface. J Mol Catal A Chem 275(1):30–35

    Article  CAS  Google Scholar 

  138. Wang CY, Pagel R, Dohrmann JK et al (2006) Antenna mechanism and deaggregation concept: novel mechanistic principles for photocatalysis. C R Chim 9(5):761–773

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J., Tian, B., Wang, L., Xing, M., Lei, J. (2018). Phase Control of TiO2 Photocatalyst. In: Photocatalysis. Lecture Notes in Chemistry, vol 100. Springer, Singapore. https://doi.org/10.1007/978-981-13-2113-9_6

Download citation

Publish with us

Policies and ethics