Skip to main content

Scalable Eigen-Analysis Engine for Large-Scale Eigenvalue Problems

  • Chapter
  • First Online:
Book cover Advanced Software Technologies for Post-Peta Scale Computing

Abstract

Our project aims to develop a massively parallel Eigen-Supercomputing Engine for post-petascale systems. Our Eigen-Engines are based on newly designed algorithms that are suited to the hierarchical architecture in post-petascale systems and show very good performance on petascale systems including K computer. In this paper, we introduce our Eigen-Supercomputing Engines: z-Pares and EigenExa and their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asakura, J., Sakurai, T., Tadano, H., Ikegami, T., Kimura, K.: A numerical method for nonlinear eigenvalue problems using contour integrals. JSIAM Lett. 1, 52–55 (2009)

    Article  MathSciNet  Google Scholar 

  2. Asakura, J., Sakurai, T., Tadano, H., Ikegami, T., Kimura, K.: A numerical method for polynomial eigenvalue problems using contour integral. Jpn. J. Indust. Appl. Math. 27, 73–90 (2010)

    Article  MathSciNet  Google Scholar 

  3. Beyn, W.-J.: An integral method for solving nonlinear eigenvalue problems. Linear Algebra Appl. 436, 3839–3863 (2012)

    Article  MathSciNet  Google Scholar 

  4. Bischof, C., et al.: A framework for symmetric band reduction. ACM Trans. Math. Softw. (TOMS) 26, 581–601 (2000)

    Article  MathSciNet  Google Scholar 

  5. Bischof, C., et al.: Algorithm 807: the SBR toolbox – software for successive band reduction. ACM Trans. Math. Softw. (TOMS) 26, 602–616 (2000)

    Article  MathSciNet  Google Scholar 

  6. Blackford, L.S., et al.: ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia (1997)

    Book  Google Scholar 

  7. Chen, H., Imakura, A., Sakurai, T.: Improving backward stability of Sakurai-Sugiura method with balancing technique in polynomial eigenvalue problem. Appl. Math. 62, 357–375 (2017)

    Article  MathSciNet  Google Scholar 

  8. Chen, H., Maeda, Y., Imakura, A., Sakurai, T., Tisseur, F.: Improving the numerical stability of the Sakurai-Sugiura method for quadratic eigenvalue problems. JSIAM Lett. 9, 17–20 (2017)

    Article  MathSciNet  Google Scholar 

  9. EigenExa Homepage: http://www.aics.riken.jp/labs/lpnctrt/en/projects/eigenexa/

  10. FEAST Eigenvalue Solver: http://www.ecs.umass.edu/~polizzi/feast/

  11. Fukaya, T., Imamura, T.: Performance evaluation of the EigenExa Eigensolver on Oakleaf-FX: Tridiagonalization Versus Pentadiagonalization. In: Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) (PDSEC 2015), pp. 960–969 (2015)

    Google Scholar 

  12. Futamura, Y., Tadano, H., Sakurai, T.: Parallel stochastic estimation method of eigenvalue distribution. JSIAM Lett. 2, 127–130 (2010)

    Article  MathSciNet  Google Scholar 

  13. Futamura, Y., Sakurai, T., Furuya, S., Iwata, J.-I.: Efficient algorithm for linear systems arising in solutions of eigenproblems and its application to electronic-structure calculations. In: Proceedings of the 10th International Meeting on High-Performance Computing for Computational Science (VECPAR 2012), pp. 226–235 (2013)

    Google Scholar 

  14. Fukaya, T., Nakatsukasa, Y., Yanagisawa, Y., Yamamoto, Y.: CholeskyQR2: a simple and communication-avoiding algorithm for computing a tall-skinny QR factorization on a large-scale parallel system. In: Proceedings of the 5th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA14), pp. 31–38 (2014)

    Google Scholar 

  15. Güttel, S., Polizzi, E., Tang, T., Viaud, G.: Zolotarev quadrature rules and load balancing for the FEAST eigensolver. SIAM J. Sci. Comput. 37, A2100–A2122 (2015)

    Article  MathSciNet  Google Scholar 

  16. Hasegawa, T., Imakura, A., Sakurai, T.: Recovering from accuracy deterioration in the contour integral-based eigensolver. JSIAM Lett. 8, 1–4 (2016)

    Article  MathSciNet  Google Scholar 

  17. Hasegawa, Y., et al.: First-principles calculations of electron states of a silicon nanowire with 100,000 atoms on the K computer. In: Proceedings of the 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, Article No. 1 (2011)

    Google Scholar 

  18. Hirota, Y., Yamada, S., Imamura, T., Sasa, N., Machida, M.: Performance of quadruple precision eigenvalue solver libraries QPEigenK & QPEigenG on the K computer. In: Proceedings of the International Supercomputing Conference (ISC’16). HPC in Asia Poster Session (2016)

    Google Scholar 

  19. Ide, T., Toda, K., Futamura, Y., Sakurai, T.: Highly parallel computation of eigenvalue analysis in vibration for automatic transmission using Sakurai-Sugiura method and K computer. SAE Technical Paper, 2016-01-1378 (2016)

    Google Scholar 

  20. Ikegami, T., Sakurai, T., Nagashima, U.: A filter diagonalization for generalized eigenvalue problems based on the Sakurai-Sugiura projection method. J. Comput. Appl. Math. 233, 1927–1936 (2010)

    Article  MathSciNet  Google Scholar 

  21. Ikegami, T., Sakurai, T.: Contour integral eigensolver for non-Hermitian systems: a Rayleigh-Ritz-type approach. Taiwan. J. Math. 14, 825–837 (2010)

    Article  MathSciNet  Google Scholar 

  22. Imakura, A., Du, L., Sakurai, T.: A block Arnoldi-type contour integral spectral projection method for solving generalized eigenvalue problems. Appl. Math. Lett. 32, 22–27 (2014)

    Article  MathSciNet  Google Scholar 

  23. Imakura, A., Du, L., Sakurai, T.: Error bounds of Rayleigh–Ritz type contour integral-based eigensolver for solving generalized eigenvalue problems. Numer. Algorithms 71, 103–120 (2016)

    Article  MathSciNet  Google Scholar 

  24. Imakura, A., Du, L., Sakurai, T.: Relationships among contour integral-based methods for solving generalized eigenvalue problems. Jpn. J. Ind. Appl. Math. 33, 721–750 (2016)

    Article  MathSciNet  Google Scholar 

  25. Imakura, A., Sakurai, T.: Block Krylov-type complex moment-based eigensolvers for solving generalized eigenvalue problems. Numer. Algorithms 75, 413–433 (2017)

    Article  MathSciNet  Google Scholar 

  26. Imakura, A., Sakurai, T.: Block SS–CAA: a complex moment-based parallel nonlinear eigensolver using the block communication-avoiding Arnoldi procedure. Parallel Comput. 74, 34–48 (2018)

    Article  MathSciNet  Google Scholar 

  27. Imakura, A., Futamura, Y., Sakurai, T.: Structure-preserving block SS–Hankel method for solving Hermitian generalized eigenvalue problems. In Proceedings of 12th International Conference on Parallel Processing and Applied Mathematics (PPAM2017) (2017, accepted)

    Google Scholar 

  28. Imakura, A., Futamura, Y., Sakurai, T.: Structure-preserving technique in the block SS–Hankel method for solving Hermitian generalized eigenvalue problems. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science, vol. 10777, pp. 600–611. Springer, Cham (2017)

    Google Scholar 

  29. Imamura, T., et al.: Current status of EigenExa, high-performance parallel dense eigensolver. In: EPASA2018 (2018)

    Google Scholar 

  30. Imamura, T., et al.: Development of a high performance eigensolver on the Peta-Scale next generation supercomputer system. Prog. Nucl. Sci. Technol. 2, 643–650 (2011)

    Article  Google Scholar 

  31. Iwase, S., Futamura, Y., Imakura, A., Sakurai, T., Ono, T.: Efficient and Scalable Calculation of Complex Band Structure using Sakurai-Sugiura Method, In SC’17 proceeding of the International Conference for High Performance Computing, Networking, Storage and Analysis, 17, 2017 (accepted).

    Google Scholar 

  32. Kestyn, J., Kalantzis, V., Polizzi, E., Saad, Y.: PFEAST: a high performance sparse eigenvalue solver using distributed-memory linear solvers, In SC’16 proceeding of the International Conference for High Performance Computing, Networking, Storage and Analysis, vol. 16 (2016)

    Google Scholar 

  33. Kravanja, P., Sakurai, T., van Barel, M.: On locating clusters of zeros of analytic functions. BIT 39, 646–682 (1999)

    Article  MathSciNet  Google Scholar 

  34. Maeda, Y., Futamura, Y., Sakurai, T.: Stochastic estimation method of eigenvalue density for nonlinear eigenvalue problem on the complex plane. JSIAM Lett. 3, 61–64 (2011)

    Article  MathSciNet  Google Scholar 

  35. Orii, S., Imamura, T., Yamamoto, Y.: Performance Prediction of Large-Scale Parallel Computing by Regression Model with Non-Negative Model Parameters, IPSJ SIG Technical Reports (High Performance Computing), Vol. 2016-HPC-155, No. 9, pp. 1–9 (2016). (in Japanese)

    Google Scholar 

  36. Polizzi, E.: A density matrix-based algorithm for solving eigenvalue problems, Phys. Rev. B 79, 115112 (2009)

    Article  Google Scholar 

  37. Sakurai, T., Sugiura, H.: A projection method for generalized eigenvalue problems using numerical integration. J. Comput. Appl. Math. 159, 119–128 (2003)

    Article  MathSciNet  Google Scholar 

  38. Sakurai, T., Hayakawa, K., Sato, M., Takahashi, D.: A parallel method for large sparse generalized eigenvalue problems by OmniRPC in a grid environment. Lect. Notes Comput. Sci. 3732, 1151–1158 (2005)

    Article  Google Scholar 

  39. Sakurai, T., Tadano, H.: CIRR: a Rayleigh-Ritz type method with counter integral for generalized eigenvalue problems. Hokkaido Math. J. 36, 745–757 (2007)

    Article  MathSciNet  Google Scholar 

  40. Sakurai, T., Kodaki, Y., Tadano, H., Takahashi, D., Sato, M., Nagashima, U.: A parallel method for large sparse generalized eigenvalue problems using a grid RPC system. Fut. Gen. Comput. Syst. Appl. Distrib. Grid Comput. 24, 613–619 (2008)

    Article  Google Scholar 

  41. Sakurai, T., Asakura, J., Tadano, H., Ikegami, T.: Error analysis for a matrix pencil of Hankel matrices with perturbed complex moments. JSIAM Lett. 1, 76–79 (2009)

    Article  MathSciNet  Google Scholar 

  42. Sakurai, T., Futamura, Y., Tadano, H.: Efficient parameter estimation and implementation of a contour integral-based eigensolver. J. Algorithms Comput. Tech. 7, 249–269 (2013)

    Article  MathSciNet  Google Scholar 

  43. Shimizu, N., Utsuno, Y., Futamura, Y., Sakurai, T.: Stochastic estimation of nuclear level density in the nuclear shell model: an application to parity-dependent level density in 58 Ni. Phys. Lett. B 753, 13–17 (2016)

    Article  Google Scholar 

  44. Tang, P.T.P., Polizzi, E.: FEAST as a subspace iteration eigensolver accelerated by approximate spectral projection. SIAM J. Matrix Anal. Appl. 35, 354–390 (2014)

    Article  MathSciNet  Google Scholar 

  45. Tisseur, F., et al.: A Parallel Divide and Conquer Algorithm for the Symmetric Eigenvalue Problem on Distributed Memory Architectures. SIAM J. Sci. Comput. 20, 2223–2236 (1999)

    Article  MathSciNet  Google Scholar 

  46. van Barel, M., Kravanja, P.: Nonlinear eigenvalue problems and contour integrals. J. Comput. Appl. Math. 292, 526–540 (2016)

    Article  MathSciNet  Google Scholar 

  47. Yamada, S., et al.: High-Performance Computing for Exact Numerical Approaches to Quantum Many-Body Problems on the Earth Simulator (SC06) (2006)

    Google Scholar 

  48. Yamazaki, I., Ikegami, T., Tadano, H., Sakurai, T.: Performance comparison of parallel eigensolvers based on a contour integral method and a Lanczos method. Parallel Comput. 39, 280–290 (2013)

    Article  MathSciNet  Google Scholar 

  49. Yin, G.: A randomized FEAST algorithm for generalized eigenvalue problems, arXiv:1612.03300 [math.NA] (2016)

    Google Scholar 

  50. Yin, G., Chan, R.H., Yeung, M.-C.: A FEAST algorithm for generalized non-Hermitian eigenvalue problems. Numer. Linear Algebra Appl. 24, e2092 (2017)

    Article  Google Scholar 

  51. Yokota, S., Sakurai, T.: A projection method for nonlinear eigenvalue problems using contour integrals. JSIAM Lett. 5, 41–44 (2013)

    Article  MathSciNet  Google Scholar 

  52. z-Pares: Parallel Eigenvalue Solver. http://zpares.cs.tsukuba.ac.jp/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Sakurai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sakurai, T., Futamura, Y., Imakura, A., Imamura, T. (2019). Scalable Eigen-Analysis Engine for Large-Scale Eigenvalue Problems. In: Sato, M. (eds) Advanced Software Technologies for Post-Peta Scale Computing. Springer, Singapore. https://doi.org/10.1007/978-981-13-1924-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1924-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1923-5

  • Online ISBN: 978-981-13-1924-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics