Skip to main content

A Review on the Bioremediation of Petroleum Hydrocarbons: Current State of the Art

  • Chapter
  • First Online:
Book cover Microbial Action on Hydrocarbons

Abstract

Petroleum hydrocarbons (PHC) enter the environment due to exploration, transportation, usage and spills. PHC contamination is of major concern worldwide due to the damage they cause to the environment. Clean up of hydrocarbon-contaminated sites is expensive and time-consuming; however, bioremediation represents a cost-effective and environmentally safe approach to clean up PHC contamination. Many bioremediation strategies can be applied depending on the contaminated site and the surrounding environment. In addition, a variety of technologies are used to assess the efficiency of bioremediation of contaminated environments through analysis of the concentration of the pollutant. Other technologies are applied to study the microbial communities in the contaminated sites since they represent the backbone of any bioremediation process. One of the most convenient technologies in this regard is next-generation sequencing (NGS) since it is cost-effective and provides comprehensive information regarding diversity and therefore bioremediation potential of microbial communities. Bioremediation, however, is not always a straightforward approach, especially when another contaminant (e.g. heavy metals) is associated with PHC. In this chapter, the concept of bioremediation of hydrocarbon-contaminated environments is illustrated. Moreover, the most common technologies applied in bioremediation are explained. In addition, the most recent tools for assessing the microbial ecology are described. Finally, current challenges and limitations of bioremediation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agency for Toxic Substances and Disease Registry (ATSDR) (1999) In: US Depertment of Health and Human Services (ed) Toxicological profile for total petroleum hydrocarbons (TPH). Public Health Service, Atlanta

    Google Scholar 

  • Abbasian F, Lockington R, Megharaj M, Naidu R (2016) The biodiversity changes in the microbial population of soils contaminated with crude oil. Curr Microbiol 72:663–670

    Article  CAS  PubMed  Google Scholar 

  • Abed RMM, Al-Kharusi S, Al-Hinai M (2015a) Effect of biostimulation, temperature and salinity on respiration activities and bacterial community composition in an oil polluted desert soil. Int Biodeterior Biodegrad 98:43–52

    Article  CAS  Google Scholar 

  • Abed RMM, Al-Kindi S, Al-Kharusi S (2015b) Diversity of bacterial communities along a petroleum contamination gradient in desert soils. Microb Ecol 69:95–105

    Article  CAS  PubMed  Google Scholar 

  • Agnello AC, Bagard M, van Hullebusch ED, Esposito G, Huguenot D (2016) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 563–564:693–703

    Article  CAS  PubMed  Google Scholar 

  • Aldstadt J, St Germain R, Grundl T, Schweitzer R (2002) An in situ laser-induced fluorescence system for polycyclic aromatic hydrocarbon-contaminated sediments

    Google Scholar 

  • Alisi C, Musella R, Tasso F, Ubaldi C, Manzo S, Cremisini C, Sprocati AR (2009) Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. Sci Total Environ 407:3024–3032

    Article  CAS  PubMed  Google Scholar 

  • Andreolli M, Lampis S, Brignoli P, Vallini G (2015) Bioaugmentation and biostimulation as strategies for the bioremediation of a burned woodland soil contaminated by toxic hydrocarbons: a comparative study. J Environ Manag 153:121–131

    Article  CAS  Google Scholar 

  • Aske N, Kallevik H, Sjöblom J (2001) Determination of saturate, aromatic, resin, and asphaltenic (SARA) components in crude oils by means of infrared and near-infrared spectroscopy. Energy Fuel 15:1304–1312

    Article  CAS  Google Scholar 

  • Aspray T, Gluszek A, Carvalho D (2008) Effect of nitrogen amendment on respiration and respiratory quotient (RQ) in three hydrocarbon contaminated soils of different type. Chemosphere 72:947–951

    Article  CAS  PubMed  Google Scholar 

  • Atlas RM (1991) Microbial hydrocarbon degradation—bioremediation of oil spills. J Chem Technol Biotechnol 52:149–156

    Article  CAS  Google Scholar 

  • Baboshin MA, Golovleva LA (2012) Aerobic bacterial degradation of polycyclic aromatic hydrocarbons (PAHs) and its kinetic aspects. Microbiology 81:639–650

    Article  CAS  Google Scholar 

  • Balba MT, Al-Awadhi N, Al-Daher R (1998) Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. J Microbiol Methods 32:155–164

    Article  CAS  Google Scholar 

  • Baran S, Bielińska JE, Oleszczuk P (2004) Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma 118:221–232

    Article  CAS  Google Scholar 

  • Barnes B (2009) 'Framework for the use of rapid measurement techniques (RMT) in the risk management of land contamination. Environment Agency, Bristol, pp 1–90

    Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  CAS  Google Scholar 

  • Brooijmans RJW, Pastink MI, Siezen RJ (2009) Hydrocarbon-degrading bacteria: the oil-spill clean-up crew. Microb Biotechnol 2:587–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown DM, Bonte M, Gill R, Dawick J, Boogaard PJ (2017) Heavy hydrocarbon fate and transport in the environment. Q J Eng Geol Hydrogeol 50:333–346

    Article  CAS  Google Scholar 

  • Bujewski G, Rutherford B (1997) The rapid optical screening tool (ROST) laser-induced fluorescence (LIF) system for screening of petroleum hydrocarbons in subsurface soils. Innovative technology verification report EPA/600/R-97/020 (February 1997)

    Google Scholar 

  • Bushnell LD, Haas HF (1941) The utilization of certain hydrocarbons by microorganisms. J Bacteriol 41:653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaillan F, Chaîneau CH, Point V, Saliot A, Oudot J (2006) Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings. Environ Pollut 144:255–265

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty R, Wu CH, Hazen TC (2012) Systems biology approach to bioremediation. Curr Opin Biotechnol 23:483–490

    Article  CAS  PubMed  Google Scholar 

  • Chuang JC, Van Emon JM, Chou Y-L, Junod N, Finegold JK, Wilson NK (2003) Comparison of immunoassay and gas chromatography–mass spectrometry for measurement of polycyclic aromatic hydrocarbons in contaminated soil. Anal Chim Acta 486:31–39

    Article  CAS  Google Scholar 

  • Colwell RR, Walker JD (1977) Ecological aspects of microbial degradation of petroleum in the marine environment. CRC Crit Rev Microbiol; (United States): Medium: X; Size: Pages: 423–45

    Google Scholar 

  • Coulon F, McKew BA, Osborn AM, McGenity TJ, Timmis KN (2007) Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Environ Microbiol 9:177–186

    Article  CAS  PubMed  Google Scholar 

  • Coulon F, Pelletier E, Gourhant L, Delille D (2005) Effects of nutrient and temperature on degradation of petroleum hydrocarbons in contaminated sub-Antarctic soil. Chemosphere 58:1439–1448

    Article  CAS  PubMed  Google Scholar 

  • Current RW, Tilotta DC (1997) Determination of total petroleum hydrocarbons in soil by on-line supercritical fluid extraction-infrared spectroscopy using a fiber-optic transmission cell and a simple filter spectrometer. J Chromatogr A 785:269–277

    Article  CAS  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:1

    Google Scholar 

  • Dawson JJC, Godsiffe EJ, Thompson IP, Ralebitso-Senior TK, Killham KS, Paton GI (2007) Application of biological indicators to assess recovery of hydrocarbon impacted soils. Soil Biol Biochem 39:164–177

    Article  CAS  Google Scholar 

  • Dickie IA, FitzJohn RG (2007) Using terminal restriction fragment length polymorphism (T-RFLP) to identify mycorrhizal fungi: a methods review. Mycorrhiza 17:259–270

    Article  CAS  PubMed  Google Scholar 

  • Dong Z-Y, Huang W-H, Xing D-F, Zhang H-F (2013) Remediation of soil co-contaminated with petroleum and heavy metals by the integration of electrokinetics and biostimulation. J Hazard Mater 260:399–408

    Article  CAS  PubMed  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri A (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152

    Article  CAS  PubMed  Google Scholar 

  • Dvořák P, Nikel PI, Damborský J, de Lorenzo V (2017) Bioremediation 3.0: engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol Adv 35:845–866

    Article  CAS  PubMed  Google Scholar 

  • Escobar-Niño A, Luna C, Luna D, Marcos AT, Cánovas D, Mellado E (2014) Selection and characterization of biofuel-producing environmental bacteria isolated from vegetable oil-rich wastes. PLoS One 9:e104063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Festa S, Coppotelli BM, Morelli IS (2016) Comparative bioaugmentation with a consortium and a single strain in a phenanthrene-contaminated soil: impact on the bacterial community and biodegradation. Appl Soil Ecol 98:8–19

    Article  Google Scholar 

  • Forrester ST, Janik LJ, McLaughlin MJ, Soriano-Disla JM, Stewart R, Dearman B (2013) Total petroleum hydrocarbon concentration prediction in soils using diffuse reflectance infrared spectroscopy. Soil Sci Soc Am J 77:450–460

    Article  CAS  Google Scholar 

  • Fritsche W, Hofrichter M (2008) Aerobic degradation by microorganisms. In: Biotechnology set. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  • Gianfreda L, Antonietta Rao M, Piotrowska A, Palumbo G, Colombo C (2005) Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution. Sci Total Environ 341:265–279

    Article  CAS  PubMed  Google Scholar 

  • Gil S, Vargas SP, March GJ (2009) Quantitative isolation of biocontrol agents Trichoderma spp., Gliocladium spp. and actinomycetes from soil with culture media. Microbiol Res 164:196–205

    Article  CAS  Google Scholar 

  • Gkorezis P, Daghio M, Franzetti A, Van Hamme JD, Sillen W, Vangronsveld J (2016) The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: an environmental perspective. Front Microbiol 7:1836

    Article  PubMed  PubMed Central  Google Scholar 

  • Gobet A, Boetius A, Ramette A (2014) Ecological coherence of diversity patterns derived from classical fingerprinting and next generation sequencing techniques. Environ Microbiol 16:2672–2681

    Article  CAS  PubMed  Google Scholar 

  • Greason S (2009) Field screening petroleum hydrocarbons using ultraviolet fluorescence technology. Apresentação no LSPA Course

    Google Scholar 

  • Grishchenkov VG, Townsend RT, McDonald TJ, Autenrieth RL, Bonner JS, Boronin AM (2000) Degradation of petroleum hydrocarbons by facultative anaerobic bacteria under aerobic and anaerobic conditions. Process Biochem 35:889–896

    Article  CAS  Google Scholar 

  • Guru GS, Gohel HR, Ghosh SK, Braganza VB (2013) Isolation and enrichment of microbes for degradation of crude oil. Int J Eng Sci Innov Technol 2:144–147

    Google Scholar 

  • Hartemink AE, McBratney AB, Naidu R (2008) Chemical bioavailability in terrestrial environments. Elsevier, Amsterdam

    Google Scholar 

  • Hays SG, Patrick WG, Ziesack M, Oxman N, Silver PA (2015) Better together: engineering and application of microbial symbioses. Curr Opin Biotechnol 36:40–49

    Article  CAS  PubMed  Google Scholar 

  • Hill GT, Mitkowski NA, Aldrich-Wolfe L, Emele LR, Jurkonie DD, Ficke A, Maldonado-Ramirez S, Lynch ST, Nelson EB (2000) Methods for assessing the composition and diversity of soil microbial communities. Appl Soil Ecol 15:25–36

    Article  Google Scholar 

  • Hinchee RE, Ong SK (1992) A rapid in situ respiration test for measuring aerobic biodegradation rates of hydrocarbons in soil. J Air Waste Manage Assoc 42:1305–1312

    Article  CAS  PubMed  Google Scholar 

  • Hivrale AU, Pawar PK, Rane NR, Govindwar SP (2015) Application of genomics and proteomics in bioremediation. In: Rathoure AK, Dhatwalia VK (eds) Toxicity and waste management using bioremediation. IGI Global, Hershey, pp 97–112

    Google Scholar 

  • Hubalek T, Vosahlova S, Mateju V, Kovacova N, Novotny C (2007) Ecotoxicity monitoring of hydrocarbon-contaminated soil during bioremediation: a case study. Arch Environ Contam Toxicol 52:1–7

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto T, Nasu M (2001) Current bioremediation practice and perspective. J Biosci Bioeng 92:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kadali KK, Simons KL, Skuza PP, Moore RB, Ball AS (2012) A complementary approach to identifying and assessing the remediation potential of hydrocarbonoclastic bacteria. J Microbiol Methods 88:348–355

    Article  CAS  PubMed  Google Scholar 

  • Kamlet MJ, Doherty RM, Veith GD, Taft RW, Abraham MH (1986) Solubility properties in polymers and biological media. 7. An analysis of toxicant properties that influence inhibition of bioluminescence in Photobacterium phosphoreum (the Microtox test). Environ Sci Technol 20:690–695

    Article  CAS  PubMed  Google Scholar 

  • Khudur LS, Shahsavari E, Miranda AF, Morrison PD, Nugegoda D, Ball AS (2015) Evaluating the efficacy of bioremediating a diesel-contaminated soil using ecotoxicological and bacterial community indices. Environ Sci Pollut Res 22:14809–14819

    Article  CAS  Google Scholar 

  • Kim S-J, Choi DH, Sim DS, Oh Y-S (2005) Evaluation of bioremediation effectiveness on crude oil-contaminated sand. Chemosphere 59:845–852

    Article  CAS  PubMed  Google Scholar 

  • Kovacs A, Yacoby K, Gophna U (2010) A systematic assessment of automated ribosomal intergenic spacer analysis (ARISA) as a tool for estimating bacterial richness. Res Microbiol 161:192–197

    Article  CAS  PubMed  Google Scholar 

  • Krupcík J, Oswald P, Oktavec D, Armstrong DW (2004) Calibration of GC-FID and IR spectrometric methods for determination of high boiling petroleum hydrocarbons in environmental samples. Water Air Soil Pollut 153:329–341

    Article  Google Scholar 

  • Lakshmi VV (2010) Genomics approach to bioremediation. In: Bioremediation technology. Springer, Dordrecht

    Google Scholar 

  • Lambert P, Fingas M, Goldthorp M (2001) An evaluation of field total petroleum hydrocarbon (TPH) systems. J Hazard Mater 83:65–81

    Article  CAS  PubMed  Google Scholar 

  • Lanno R, Wells J, Conder J, Bradham K, Basta N (2004) The bioavailability of chemicals in soil for earthworms. Ecotoxicol Environ Saf 57:39–47

    Article  CAS  PubMed  Google Scholar 

  • LO N, Kang HJ, Jeon CO (2014) Zhongshania aliphaticivorans sp. nov., an aliphatic hydrocarbon-degrading bacterium isolated from marine sediment, and transfer of Spongiibacter borealis Jang et al. 2011 to the genus Zhongshania as Zhongshania borealis comb. nov. Int J Syst Evol Microbiol 64:3768–3774

    Google Scholar 

  • Loman NJ, Constantinidou C, Chan JZM, Halachev M, Sergeant M, Penn CW, Robinson ER, Pallen MJ (2012) High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol 10:599–606

    Article  CAS  PubMed  Google Scholar 

  • Malik S, Beer M, Megharaj M, Naidu R (2008) The use of molecular techniques to characterize the microbial communities in contaminated soil and water. Environ Int 34:265–276

    Article  CAS  PubMed  Google Scholar 

  • Medina-Bellver JI, Marín P, Delgado A, Rodríguez-Sánchez A, Reyes E, Ramos JL, Marqués S (2005) Evidence for in situ crude oil biodegradation after the prestige oil spill. Environ Microbiol 7:773–779

    Article  CAS  PubMed  Google Scholar 

  • Mooney TJ, King CK, Wasley J, Andrew NR (2013) Toxicity of diesel contaminated soils to the subantarctic earthworm Microscolex macquariensis. Environ Toxicol Chem 32:370–377

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A, Chattopadhyay D (2017) Exploring environmental systems and processes through next-generation sequencing technologies: insights into microbial response to petroleum contamination in key environments. Nucleus 60:175–186

    Article  Google Scholar 

  • Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322

    Article  CAS  PubMed  Google Scholar 

  • Okparanma RN, Mouazen AM (2013) Determination of total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbon (PAH) in soils: a review of spectroscopic and nonspectroscopic techniques. Appl Spectrosc Rev 48:458–486

    Article  CAS  Google Scholar 

  • Page AL, Miller RH, Jeeney DR (1982) Methods of soil analysis, Part 1. The American Society of Agronomy, Madison

    Google Scholar 

  • Peterson GS, Axler RP, Lodge KB, Schuldt JA, Crane JL (2002) Evaluation of a fluorometric screening method for predicting total PAH concentrations in contaminated sediments. Environ Monit Assess 78:111–129

    Article  CAS  PubMed  Google Scholar 

  • Poster DL, Schantz MM, Sander LC, Wise SA (2006) Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples: a critical review of gas chromatographic (GC) methods. Anal Bioanal Chem 386:859–881

    Article  CAS  PubMed  Google Scholar 

  • Ramos J-L, Marqués S, van Dillewijn P, Espinosa-Urgel M, Segura A, Duque E, Krell T, Ramos-González M-I, Bursakov S, Roca A, Solano J, Fernádez M, Niqui JL, Pizarro-Tobias P, Wittich R-M (2011) Laboratory research aimed at closing the gaps in microbial bioremediation. Trends Biotechnol 29:641–647

    Article  CAS  PubMed  Google Scholar 

  • Rastogi G, Sani RK (2011) Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In: Microbes and microbial technology. Springer, New York

    Google Scholar 

  • Reddy KR (2010) Technical challenges to in-situ remediation of polluted sites. Geotech Geol Eng 28:211–221

    Article  Google Scholar 

  • Reddy KR, Maturi K, Cameselle C (2009) Sequential electrokinetic remediation of mixed contaminants in low permeability soils. J Environ Eng 135:989–998

    Article  CAS  Google Scholar 

  • Saari E, Perämäki P, Jalonen J (2010) Evaluating the impact of GC operating settings on GC–FID performance for total petroleum hydrocarbon (TPH) determination. Microchem J 94:73–78

    Article  CAS  Google Scholar 

  • Sabra W, Dietz D, Tjahjasari D, Zeng A-P (2010) Biosystems analysis and engineering of microbial consortia for industrial biotechnology. Eng Life Sci 10:407–421

    Article  CAS  Google Scholar 

  • Sandrin TR, Maier RM (2003) Impact of metals on the biodegradation of organic pollutants. Environ Health Perspect 111:1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlegel HG, Zaborosch C (1993) General microbiology. Cambridge university press, Cambridge/New York

    Google Scholar 

  • Schulz S, Peréz-de-Mora A, Engel M, Munch JC, Schloter M (2010) A comparative study of most probable number (MPN)-PCR vs. real-time-PCR for the measurement of abundance and assessment of diversity of alkB homologous genes in soil. J Microbiol Methods 80:295–298

    Article  CAS  PubMed  Google Scholar 

  • Schwieger F, Tebbe CC (1998) A new approach to utilize PCR–single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shahsavari E, Aburto-Medina A, Khudur LS, Taha M, Ball AS (2017) From microbial ecology to microbial ecotoxicology. In: Cravo-Laureau C, Cagnon C, Lauga B, Duran R (eds) Microbial ecotoxicology. Springer, Cham

    Google Scholar 

  • Shahsavari E, Aburto-Medina A, Taha M, Ball AS (2016) A quantitative PCR approach for quantification of functional genes involved in the degradation of polycyclic aromatic hydrocarbons in contaminated soils. MethodsX 3:205–211

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahsavari E, Adetutu EM, Anderson PA, Ball AS (2013) Tolerance of selected plant species to petrogenic hydrocarbons and effect of plant rhizosphere on the microbial removal of hydrocarbons in contaminated soil. Water Air Soil Pollut 224:1495

    Article  CAS  Google Scholar 

  • Shahsavari E, Adetutu EM, Taha M, Ball AS (2015) Rhizoremediation of phenanthrene and pyrene contaminated soil using wheat. J Environ Manag 155:171–176

    Article  CAS  Google Scholar 

  • Sherma J, Zweig G (1972) Handbook of chromatography. CRC Press, Cleveland

    Google Scholar 

  • Shokralla S, Spall JL, Gibson JF, Hajibabaei M (2012) Next-generation sequencing technologies for environmental DNA research. Mol Ecol 21:1794–1805

    Article  CAS  PubMed  Google Scholar 

  • Straube WL, Nestler CC, Hansen LD, Ringleberg D, Pritchard PH, Jones-Meehan J (2003) Remediation of polyaromatic hydrocarbons (PAHs) through land farming with biostimulation and bioaugmentation. Acta Biotechnol 23:179–196

    Article  CAS  Google Scholar 

  • Suja F, Rahim F, Taha MR, Hambali N, Rizal Razali M, Khalid A, Hamzah A (2014) Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations. Int Biodeterior Biodegrad 90:115–122

    Article  CAS  Google Scholar 

  • Techtmann SM, Hazen TC (2016) Metagenomic applications in environmental monitoring and bioremediation. J Ind Microbiol Biotechnol 43:1345–1354

    Article  CAS  PubMed  Google Scholar 

  • Thapa B, KC AK, Ghimire A (2012) A review on bioremediation of petroleum hydrocarbon contaminants in soil. Kathmandu University Journal of Science, Engineering and Technology 8:7

    Google Scholar 

  • Thavamani P, Malik S, Beer M, Megharaj M, Naidu R (2012a) Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals. J Environ Manag 99:10–17

    Article  CAS  Google Scholar 

  • Thavamani P, Megharaj M, Naidu R (2012b) Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium. Biodegradation 23:823–835

    Article  CAS  PubMed  Google Scholar 

  • Thornton B, Zhang Z, Mayes RW, Högberg MN, Midwood AJ (2011) Can gas chromatography combustion isotope ratio mass spectrometry be used to quantify organic compound abundance? Rapid Commun Mass Spectrom 25:2433–2438

    Article  CAS  PubMed  Google Scholar 

  • Torstensson L (1996) Microbial assays in soils. In: Soil ecotoxicology. CRC Lewis Publishers, Boca Raton, pp 207–234

    Google Scholar 

  • Uhlík O, Jecná K, Leigh MB, Macková M, Macek T (2009) DNA-based stable isotope probing: a link between community structure and function. Sci Total Environ 407:3611–3619

    Article  CAS  PubMed  Google Scholar 

  • Wang ZD, Fingas M (1995) Differentiation of the source of spilled oil and monitoring of the oil weathering process using gas chromatography-mass spectrometry. J Chromatogr A 712:321–343

    Article  CAS  Google Scholar 

  • Wang ZD, Fingas MF (2003) Development of oil hydrocarbon fingerprinting and identification techniques. Mar Pollut Bull 47:423–452

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Fingas M, Li K (1994) Fractionation of a light crude oil and identification and quantitation of aliphatic, aromatic, and biomarker compounds by GC-FID and GC-MS, part II. J Chromatogr Sci 32:367–382

    Article  CAS  Google Scholar 

  • Webster GT, Soriano-Disla JM, Kirk J, Janik LJ, Forrester ST, McLaughlin MJ, Stewart RJ (2016) Rapid prediction of total petroleum hydrocarbons in soil using a hand-held mid-infrared field instrument. Talanta 160:410–416

    Article  CAS  PubMed  Google Scholar 

  • Wentzel A, Ellingsen TE, Kotlar H-K, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221

    Article  CAS  PubMed  Google Scholar 

  • Whittaker M, Pollard SJT, Fallick TE (1995) Characterisation of refractory wastes at heavy oil-contaminated sites: a review of conventional and novel analytical methods. Environ Technol 16:1009–1033

    Article  CAS  Google Scholar 

  • Widmer F, Fliessbach A, Laczko E, Schulze-Aurich J, Zeyer J (2001) Assessing soil biological characteristics: a comparison of bulk soil community DNA-, PLFA-, and Biolog™-analyses. Soil Biol Biochem 33:1029–1036

    Article  CAS  Google Scholar 

  • Wu M, Dick WA, Li W, Wang X, Yang Q, Wang T, Xu L, Zhang M, Chen L (2016) Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. Int Biodeterior Biodegrad 107:158–164

    Article  CAS  Google Scholar 

  • Yerushalmi L, Rocheleau S, Cimpoia R, Sarrazin M, Sunahara G, Peisajovich A, Leclair G, Guiot SR (2003) Enhanced biodegradation of petroleum hydrocarbons in contaminated soil. Biorem J 7:37–51

    Article  CAS  Google Scholar 

  • Yu KSH, Wong AHY, Yau KWY, Wong YS, Tam NFY (2005a) Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar Pollut Bull 51:1071–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu KSH, Wong AHY, Yau KWY, Wong YS, Tam NFY (2005b) Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar Pollut Bull 51:1071–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Gai L, Hou Z, Yang C, Ma C, Wang Z, Sun B, He X, Tang H, Xu P (2010) Characterization and biotechnological potential of petroleum-degrading bacteria isolated from oil-contaminated soils. Bioresour Technol 101:8452–8456

    Article  CAS  PubMed  Google Scholar 

  • Zobell CE (1946) Action of microörganisms on hydrocarbons. Bacteriol Rev 10:1–49

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Shahsavari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khudur, L.S., Shahsavari, E., Aburto-Medina, A., Ball, A.S. (2018). A Review on the Bioremediation of Petroleum Hydrocarbons: Current State of the Art. In: Kumar, V., Kumar, M., Prasad, R. (eds) Microbial Action on Hydrocarbons. Springer, Singapore. https://doi.org/10.1007/978-981-13-1840-5_27

Download citation

Publish with us

Policies and ethics