Skip to main content

A View on Atlas-Based Neonatal Brain MRI Segmentation

  • Conference paper
  • First Online:
ICTMI 2017

Abstract

Purpose This paper provides an outline of the atlas-based algorithms in the area of neonatal brain MRI segmentation. The goal is to provide a complete overview of the existing atlas-based segmentation strategies and evaluation methods. Procedures Pros and cons of commonly used neuroimaging techniques are analyzed. A detailed review of each stage in the automatic delineation process is presented here. Preprocessing, registration, label propagation, and fusion methods used in various atlas-based approaches are discussed. Furthermore, the validation schemes are also addressed. Results The findings in this paper prefer MRI to be most suitable imaging modality in case of neonatal brain analysis. The atlas-based segmentation strategies can be categorized into two: multiple atlas and probabilistic atlas-based methods. A detailed comparison of both the methods is provided. Conclusion This paper reviews recent and prominent atlas-based segmentation algorithms for neonatal brain MRI. The major challenges and future directions in this area are also identified in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar D, Verma A, Sehgal V et al (2007) Neonatal mortality in India

    Google Scholar 

  2. Walsh JM, Doyle LW, Anderson PJ et al (2014) Moderate and late preterm birth: effect on brain size and maturation at term-equivalent age. Radiology 273:232–240

    Article  Google Scholar 

  3. Kidokoro H, Anderson PJ, Doyle LW et al (2014) Brain injury and altered brain growth in preterm infants: predictors and prognosis. Pediatrics 134:e444–e453

    Article  Google Scholar 

  4. Robertson C, Sauve RS, Christianson HE et al (1994) Province-based study of neurologic disability among survivors weighing 500 through 1249 grams at birth. Pediatrics 93:636–640

    Google Scholar 

  5. Miall Lawrence S, Cornette Luc G, Tanner Steven F, Arthur Rosemary J, Levene MI (2003) Posterior fossa abnormalities seen on magnetic resonance brain imaging in a cohort of newborn infants—ProQuest. J Perinatol 23:396–403

    Article  Google Scholar 

  6. Inder TE, Wells SJ, Mogridge NB, Spencer C, Volpe JJ (2003) Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. J Pediatr 143:171–179

    Article  Google Scholar 

  7. Aubert-Broche B, Fonov V, Leppert I et al Human brain myelination from birth to 4.5 years. In: Medical image computing and computer-assisted intervention—MICCAI 2008. Springer, Berlin, pp 180–187

    Chapter  Google Scholar 

  8. Di Rocco M, Biancheri R, Rossi A et al (2004) Genetic disorders affecting white matter in the pediatric age. Am J Med Genet 129B:85–93

    Article  Google Scholar 

  9. Kitagaki H, Mori E, Yamaji S et al (1998) Frontotemporal dementia and Alzheimer disease: evaluation of cortical atrophy with automated hemispheric surface display generated with MR images. Radiology 208:431–439

    Article  Google Scholar 

  10. Atkins MS, Mackiewich BT (1998) Fully automatic segmentation of the brain in MRI. IEEE Trans Med Imaging 17:98–107

    Article  Google Scholar 

  11. Ballester MAG, Zisserman AP, Brady M (2002) Estimation of the partial volume effect in MRI. Med Image Anal 6:389–405

    Article  Google Scholar 

  12. Stiles J, Jernigan TL (2010) The basics of brain development. Neuropsychol Rev 20:327–348

    Article  Google Scholar 

  13. Holland D, Chang L, Ernst TM et al (2014) Structural growth trajectories and rates of change in the first 3 months of infant brain development. JAMA Neurol 71:1266

    Article  Google Scholar 

  14. Shi F, Yap P-T, Wu G et al (2011) Infant brain atlases from neonates to 1- and 2-year-olds. PLoS ONE 6:e18746

    Article  Google Scholar 

  15. Kuklisova-Murgasova M, Aljaba P, Srinivasan L, Counsell SJ, Doria V, Serag Ahmed et al (2011) A dynamic 4D probabilistic atlas of the developing brain. Neuroimage 54:2750–2763

    Article  Google Scholar 

  16. Fonov V, Evans A, McKinstry R et al (2009) Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. Neuroimage 47:S102

    Article  Google Scholar 

  17. Altaye M, Holland SK, Wilke M, Gaser C (2008) Infant brain probability templates for MRI segmentation and normalization. Neuroimage 43:721–730

    Article  Google Scholar 

  18. Sanchez CE, Richards JE, Almli CR (2012) Neurodevelopmental MRI brain templates for children from 2 weeks to 4 years of age. Dev Psychobiol 54:77–91

    Article  Google Scholar 

  19. Akiyama LF, Richards TR, Imada T et al (2013) Age-specific average head template for typically developing 6-month-old infants. PLoS ONE 8:e73821

    Article  Google Scholar 

  20. Vovk U, Pernus F, Likar B (2007) A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 26:405–421

    Article  Google Scholar 

  21. Xue H, Srinivasan L, Jiang S et al (2007) Automatic segmentation and reconstruction of the cortex from neonatal MRI. Neuroimage 38:461–477

    Article  Google Scholar 

  22. Shi F, Yap P-T, Fan Y et al (2009) Cortical enhanced tissue segmentation of neonatal brain MR images acquired by a dedicated phased array coil. In: 2009 IEEE computer society conference on computer vision pattern recognition work. IEEE, New York, pp 39–45

    Google Scholar 

  23. Tustison NJ, Avants BB, Cook PA et al (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320

    Article  Google Scholar 

  24. Gui L, Lisowski R, Faundez T et al (2012) Morphology-driven automatic segmentation of MR images of the neonatal brain. Med Image Anal 16:1565–1579

    Article  Google Scholar 

  25. Yu X, Zhang Y, Lasky RE et al (2010) Comprehensive brain MRI segmentation in high risk preterm newborns. PLoS ONE 5:e13874

    Article  Google Scholar 

  26. Prastawa M, Gilmore JH, Lin W, Gerig G (2005) Automatic segmentation of MR images of the developing newborn brain. Med Image Anal 9:457–466

    Article  Google Scholar 

  27. Vaishali S, Rao KK, Rao GVS (2015) A review on noise reduction methods for brain MRI images. In: 2015 International conference on signal process communication engineering systems. IEEE, New York, pp 363–365

    Google Scholar 

  28. Kalavathi P, Prasath VBS (2016) Methods on skull stripping of MRI head scan images—a review. J Digit Imaging 29:365–379

    Article  Google Scholar 

  29. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173

    Article  Google Scholar 

  30. Dawant BM, Hartmann SL, Thirion J-P et al (1999) Automatic 3-D segmentation of internal structures of the head in MR images using a combination of similarity and free-form transformations. I. Methodology and validation on normal subjects. IEEE Trans Med Imaging 18:909–916

    Article  Google Scholar 

  31. Shattuck DW, Leahy RM (2001) Automated graph-based analysis and correction of cortical volume topology. IEEE Trans Med Imaging 20:1167–1177

    Article  Google Scholar 

  32. Aboutanos GB, Nikanne J, Watkins N, Dawant BM (1999) Model creation and deformation for the automatic segmentation of the brain in MR images. IEEE Trans Biomed Eng 46:1346–1356

    Article  Google Scholar 

  33. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155

    Article  Google Scholar 

  34. Merisaari H, Parkkola R, Alhoniemi E et al (2009) Gaussian mixture model-based segmentation of MR images taken from premature infant brains. J Neurosci Methods 182:110–122

    Article  Google Scholar 

  35. Leung KK, Barnes J, Modat M et al (2011) Brain MAPS: an automated, accurate and robust brain extraction technique using a template library. Neuroimage 55:1091–1108

    Article  Google Scholar 

  36. Cointepas Y, Mangin J-F, Garnero L et al (2001) BrainVISA: software platform for visualization and analysis of multi-modality brain data. Neuroimage 6(Supplement):98

    Article  Google Scholar 

  37. Makropoulos A, Ledig C, Aljabar P et al (2012) Automatic tissue and structural segmentation of neonatal brain MRI using Expectation-Maximization. In: MICCAI grand challenge: neonatal brain segmentation (NeoBrainS12), pp 9–15

    Google Scholar 

  38. Srhoj-Egekher V, Benders MJNL, Kersbergen KJ et al (2012) Automatic segmentation of neonatal brain MRI using atlas based segmentation and machine learning approach. In: MICCAI grand challenge: neonatal brain segmentation (NeoBrainS12)

    Google Scholar 

  39. Anbeek P, Vincken KL, Groenendaal F et al (2008) Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging. Pediatr Res 63:158–163

    Article  Google Scholar 

  40. Chiţă SM, Benders M, Moeskops P et al (2013) Automatic segmentation of the preterm neonatal brain with MRI using supervised classification. In: Ourselin S, Haynor DR (eds) International society for optics and photonics, p 86693X

    Google Scholar 

  41. Wang L, Shi F, Yap P-T et al (2012) 4D multi-modality tissue segmentation of serial infant images. PLoS ONE 7:e44596

    Article  Google Scholar 

  42. Melbourne A, Cardoso MJ, Kendall GS, Robertson NJ, Neil M, Sebastien O (2012) NeoBrainS12 challenge: adaptive neonatal MRI brain segmentation with myelinated white matter class and automated extraction of ventricles I-IV. In: MICCAI grand challenge: neonatal brain segmentation (NeoBrainSI2), pp 16–12

    Google Scholar 

  43. Klein S, Staring M, Murphy K et al (2010) elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29:196–205

    Article  Google Scholar 

  44. Gousias IS, Hammers A, Counsell SJ et al (2013) Magnetic resonance imaging of the newborn brain: automatic segmentation of brain images into 50 anatomical regions. PLoS ONE 8:e59990

    Article  Google Scholar 

  45. Gousias IS, Hammers A, Counsell SJ et al (2012) Automatic segmentation of pediatric brain MRIs using a maximum probability pediatric atlas. In: 2012 IEEE international conference on imaging systems technology process. IEEE, New York, pp 95–100

    Google Scholar 

  46. Oishi K, Mori S, Donohue PK et al (2011) Multi-contrast human neonatal brain atlas: application to normal neonate development analysis. Neuroimage 56:8–20

    Article  Google Scholar 

  47. Christensen GE, Rabbitt RD, Miller MI (1994) 3D brain mapping using a deformable neuroanatomy. Phys Med Biol 39:609–618

    Article  Google Scholar 

  48. Collins DL, Holmes CJ, Peters TM, Evans AC (1995) Automatic 3-D model-based neuroanatomical segmentation. Hum Brain Mapp 3:190–208

    Article  Google Scholar 

  49. Makropoulos A, Gousias IS, Ledig C et al (2014) Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE Trans Med Imaging 33:1818–1831

    Article  Google Scholar 

  50. Cardoso MJ, Melbourne A, Kendall GS et al (2011) Adaptive neonate brain segmentation. Med Image Comput Comput Assist Interv 14:378–386

    Google Scholar 

  51. Srhoj-Egekher V, Benders MJNL, Viergever MA, IÅ¡gum I (2013) Automatic neonatal brain tissue segmentation with MRI. In: Ourselin S, Haynor DR (eds) International society for optics and photonics, p 86691K

    Google Scholar 

  52. Heckemann RA, Hajnal JV, Aljabar P et al (2006) Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage 33:115–126

    Article  Google Scholar 

  53. Rohlfing T, Russakoff DB, Maurer CR (2004) Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation. IEEE Trans Med Imaging 23:983–994

    Article  Google Scholar 

  54. Aljabar P, Heckemann RA, Hammers A et al (2009) Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage 46:726–738

    Article  Google Scholar 

  55. Artaechevarria X, Munoz-Barrutia A, Ortiz-de-Solorzano C (2009) Combination strategies in multi-atlas image segmentation: application to brain MR data. IEEE Trans Med Imaging 28:1266–1277

    Article  Google Scholar 

  56. Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23:903–921

    Article  Google Scholar 

  57. Weisenfeld NI, Warfield SK (2009) Automatic segmentation of newborn brain MRI. Neuroimage 47:564–572

    Article  Google Scholar 

  58. Weisenfeld NI, Mewes AUJ, Warfield SK Segmentation of Newborn Brain MRI. In: 3rd IEEE international symposium on biomedical imaging macro to nano, 2006. IEEE, New York, pp 766–769

    Google Scholar 

  59. Song Z (2008) Statistical tissue segmentation of neonatal brain MR images. Diss

    Google Scholar 

  60. Cardoso MJ, Melbourne A, Kendall GS et al (2013) AdaPT: an adaptive preterm segmentation algorithm for neonatal brain MRI. Neuroimage 65:97–108

    Article  Google Scholar 

  61. Anbeek P, IÅ¡gum I, van Kooij BJM et al (2013) Automatic segmentation of eight tissue classes in neonatal brain MRI. PLoS ONE 8:e81895

    Article  Google Scholar 

  62. Van Leemput K, Maes F, Vandermeulen D et al (2001) Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Trans Med Imaging 20:677–688

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kalaivani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

George, M.M., Kalaivani, S. (2019). A View on Atlas-Based Neonatal Brain MRI Segmentation. In: Gulyás, B., Padmanabhan, P., Fred, A., Kumar, T., Kumar, S. (eds) ICTMI 2017. Springer, Singapore. https://doi.org/10.1007/978-981-13-1477-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1477-3_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1476-6

  • Online ISBN: 978-981-13-1477-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics