Skip to main content

Treatment and Recycling of Wastewater from Dairy Industry

  • Chapter
  • First Online:

Abstract

Dairy industry is considered as one of the major water consuming industries in the world and the waste generated from dairy industry severely contaminates the environment. World is facing severe water crisis, therefore, it is needed to process the waste water for reuse purpose. The processing of raw milk result in production of high concentration of organic matter such as proteins, carbohydrates, lipids, suspended solids, high nitrogen concentration and oil/grease contents. The waste water thus released from the dairy industry has high biological oxygen demand (BOD) and chemical oxygen demand (COD), high variation in pH usually being slightly alkaline in nature, further on fermentation of milk sugar it is converted to lactic acid and rapidly becomes acidic. If the waste water is released untreated in the environment, these organic and inorganic contaminants from the dairy industries can disrupt terrestrial and aquatic ecosystems and there by imbalance the ecosystem. Thus, there is an urgent need to develop efficient techniques for the treatment of dairy effluents. Waste water from dairy industries can be treated by various methods such as physical, chemical and biological. However, to reduce the operational cost, increase in efficiency, recycling and reuse of waste water and to decrease disruptions of environmental resources, further advancements in the treatment methods have become the need of the hour.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acuner E, Dilek FB (2004) Treatment of tertian yellow 2G by Chlorella vulgaris. Process Biochem 142:623–631

    Article  CAS  Google Scholar 

  • Ahmad AL, Yasin NHM, Derek CJC et al (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sust Energ Rev 15:584–593

    Article  CAS  Google Scholar 

  • Alexiou IE, Anderson GK, Evison LM (1994) Design of pre-acidification reactors for the anaerobic treatment of industrial wastewaters. Water Sci Technol 29:199–204

    Article  CAS  Google Scholar 

  • Andrade LH, Mendes FDS, Espindola JC, AmaralM CS (2014) Nanofiltration as tertiary treatment for the reuse of dairy wastewater treated by membrane bioreactor. Sep Purif Technol 126:21–29

    Article  CAS  Google Scholar 

  • Andualem B, Gessesse A (2013) Production of microbial medium from defatted brebra (Milletia ferruginea) seed flour to substitute commercial peptone agar. Asian Pac J Trop Biomed 3:790–797

    Article  CAS  Google Scholar 

  • Aydiner C, Sen U, Topcu S et al (2014) Techno-economic viability of innovative membrane systems in water and mass recovery from dairy wastewater. J Membr Sci 458:66–78

    Article  CAS  Google Scholar 

  • Banik GC, Dague RR (1997) ASBR treatment of low strength industrial wastewater at psychrophilic temperatures. Water Sci Technol 36:337–344

    Article  CAS  Google Scholar 

  • Banu JR, Anandan S, Kaliappan S, Yeom IT (2008) Treatment of dairy wastewater using anaerobic and solarphotocatalytic methods. Sol Energy 82:812–819

    Article  CAS  Google Scholar 

  • Barnwal BK, Sharma MP (2005) Prospects of biodiesel production from vegetable oil in India. Renew Sust Energ Rev 9:363–378

    Article  Google Scholar 

  • Becker P, Abu-Reesh I, Markossian S, Antranikian G, Märkl H (1997) Determination of the kinetic parameters during continuous cultivation of the lipase-producing thermophile Bacillus sp. IHI-91 on olive oil. Appl Microbiol Biotechnol 48:184–190

    Article  CAS  Google Scholar 

  • Berk Z (2009) Food process engineering and technology, 1st edn. Elsevier, Oxford

    Google Scholar 

  • Bhatia M, Goyal D (2014) Analyzing remediation potential of wastewater through wetland plants: a review. Environ Prog Sustain Energy 33:9–27

    Article  CAS  Google Scholar 

  • Bódalo-Santoyo A, Gómez-Carrasco JL, Gómez-Gómez E et al (2004) Spiral-wound membrane reverse osmosis and the treatment of industrial effluents. Desalination 160:151–158

    Article  CAS  Google Scholar 

  • Bouhabila E, Ben R (2001) Aim and Buisson Fouling characterisation in membrane bioreactors. Sep Purif 22:123–132

    Article  Google Scholar 

  • Carvalho F, Prazeres AR, Rivas J (2013) Cheese whey wastewater: characterization and treatment. Sci Tot Env 446:385–396

    Article  CAS  Google Scholar 

  • Cheang B, Zydney AL (2003) Separation of alpha-lactalbumin and beta-lactoglobulin using membrane ultrafiltration. Biotechnol Bioeng 83:201–209

    Article  CAS  Google Scholar 

  • Chen Z, Luo J, Chen X et al (2016) Fully recycling dairy wastewater by an integrated isoelectric precipitation-nanofiltration-anaerobic fermentation process. Chem Eng J 3:467–485

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Chokshi KO, Pancha I, Ghosh A et al (2016) Microalgal biomass generation by phycoremediation of dairy industry wastewater: an integrated approach towards sustainable biofuel production. Bioresour Technol 221:455–460

    Article  CAS  Google Scholar 

  • Cohen Z (1999) Chemicals from microalgae. Taylor & Francis Ltd: CRC Press, Florida

    Google Scholar 

  • Danalewich JR, Papagiannis TG, Belyea RL, Tumbleson ME, Raskin L (1998) Characterization of dairy waste streams, current treatment practices, and potential for biological nutrient removal. Water Res 32:3555–3568

    Article  CAS  Google Scholar 

  • Delgado S, Diaz SF, Garcia D, Otero N (2003) Behaviour of inorganic coagulants in secondary effluents from a conventional wastewater treatment plant. Filtr Sep 40:42–46

    Article  CAS  Google Scholar 

  • Demirel B, Yenigun O (2002) Two-phase anaerobic digestion processes: a review. J Chem Technol Biotechnol 77:743–755

    Article  CAS  Google Scholar 

  • Demirel B, Yenigun O, Onay TT (2005) Anaerobic treatment of dairy wastewaters: a review. Process Biochem 40:2583–2595

    Article  CAS  Google Scholar 

  • Djelal H, Amrane A (2013) Biodegradation by bioaugmentation of dairy wastewater by fungal consortium on a bioreactor lab-scale and on a pilot scale. J Environ Sci (China) 25:1906–1912

    Article  CAS  Google Scholar 

  • Dugba P, Zhang R (1999) Treatment of dairy wastewater with two-stage anaerobic sequencing batch reactor systems—thermophilic versus mesophilic operations. Bioresour Technol 68:225–233

    Article  CAS  Google Scholar 

  • Dyrset N, Selmer-Olsen E, Havrevoll O et al (1998) Feed supplement recovered from dairy wastewater by biological and chemical pretreatment. J ChemTechnol Biotechnol 73:175–182

    Article  CAS  Google Scholar 

  • Environment Protection Act (1997) A1997-92 Republication No 59 Effective: 31 August 2017

    Google Scholar 

  • Farhana MS, Biviand M, Khairulmazmi A (2011) Effect of carbon sources on bacterial production of metabolites against Fusarium oxysporum and Colletotrichum gloeosporioides. Int J Agr Biol 13:1–8

    Google Scholar 

  • Ferreira JA, Lennartsson PR, Edebo L et al (2013) Zygomycetes-based biorefinery: present status and future prospects. Bioresour Technol 135:523–532

    Article  CAS  Google Scholar 

  • Ferreira JA, Mahboubi A, Lennartsson PR et al (2016) Waste biorefineries using filamentous ascomycetes fungi: present status and future prospects. Bioresour Technol 215:334–345

    Article  CAS  Google Scholar 

  • Gowland P, Kernick M, Sundaran TK (1987) Thermophilic bacterial isolates producing lipase. FEMS Microbiol Lett 48:339–343

    Article  CAS  Google Scholar 

  • Guerrero L, Omil F, Mendez R, Lema JM (1999) Anaerobic hydrolysis and acidogenesis of wastewaters from food industries with high content of organic solids and protein. Water Res 33:3281–3290

    Article  CAS  Google Scholar 

  • Guillen-Jimenez E, Alvarez-Mateos P, Romero-Guzman F, Pereda Martin J (2000) Bio-mineralization of organic matter as affected by pH the evolution of ammonium and phosphates. Water Res 34:1215–1224

    Article  CAS  Google Scholar 

  • Gupta BS, Ako JE (2005) Application of Guar gum as a flocculant aid in food processing and portable water treatment. Eur Food Res Technol 221:746–751

    Article  CAS  Google Scholar 

  • Gutierrez S, Ferrari A, Benitez A, Travers D, Menes J, Etchebehere C, Canetti R (2007) Long-term evaluation of a sequential batch reactor (SBR) treating dairy wastewater for carbon removal. Water Sci Technol 55:193–199

    Article  CAS  Google Scholar 

  • Hamoda MF, Al-Awadi SM (1996) Improvement of effluent quality for reuse in a dairy farm. Water Sci Tech 33:79–85

    Article  CAS  Google Scholar 

  • Hargesheimer EE, Watson SB (1996) Drinking water treatment options for taste and odor control. Water Res 30:1423–1430

    Article  CAS  Google Scholar 

  • Huang C, Luo M, Chen X et al (2017) Recent advances and industrial viewpoint for biological treatment of wastewaters by oleaginous microorganisms. Bioresour Technol 232:398–407

    Article  CAS  Google Scholar 

  • Huban CM, Plowman RD (1997) Bioaugmentation: put microbes to work. Chem Eng 104:74–82

    CAS  Google Scholar 

  • Ince O (1998) Potential energy production from anaerobic digestion of dairy wastewater. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 33:1219–1228

    Article  Google Scholar 

  • Karadag D, Köroglu OE, Ozkaya B, Cakmakci M (2015) A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater. Process Biochem 50:262–271

    Article  CAS  Google Scholar 

  • Kasapgil B, Anderson GK, Ince O (1994) An investigation into the pretreatment of dairy wastewater prior to aerobic biological treatment. Water Sci Technol 29:205–212

    Article  CAS  Google Scholar 

  • Kasmi M (2016) Biological processes as promoting way for both treatment and valorization of dairy industry effluents: a review. Waste Biomass Valor 9:195–209

    Article  CAS  Google Scholar 

  • Kasmi M, Hamdi M, Trabelsi I (2017) Eco-friendly process combining physical-chemical and biological technics for the fermented dairy products waste pretreatment and reuse. Water Sci Technol 75:39–47

    Article  CAS  Google Scholar 

  • Keenan D, Sabelnikov A (2000) Biological augmentation eliminates grease and oil in bakery wastewater. Water Environ Res 72:141–146

    Article  CAS  Google Scholar 

  • Khalaf MA (2008) Biosorption of reactive dye from textile wastewater by non-viable biomass of Aspergillus niger and Spirogyra sp. Bioresour Technol 99:6631–6634

    Article  CAS  Google Scholar 

  • Kolarski R, Nyhuis G (1995) The use of sequencing batch reactor technology for the treatment of high strength dairy processing waste. In: Proceedings of the50th Purdue international waste conference. p 485–494

    Google Scholar 

  • Kosseva MR, Kent CA, Lloyd DR (2003) Thermophilic bioremediation strategies for a dairy waste. Biochem Eng J 15:125–130

    Article  CAS  Google Scholar 

  • Kothari R, Pathak VV, Kumar V et al (2012) Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water: an integrated approach for treatment and biofuel production. Bioresour Technol 116:466–470

    Article  CAS  Google Scholar 

  • Kothari R, Kumar V, Vinayak V et al (2017) Sequential hydrogen and methane production with simultaneous treatment of dairy industry wastewater: bioenergy profit approach. Int J Hydrog Energy 42:4870–4879

    Article  CAS  Google Scholar 

  • Krajewska B (2005) Membrane-based processes performed with use of chitin/chitosan materials. Sep Purif Technol 41:305–312

    Article  CAS  Google Scholar 

  • Kumar Desai K (2011) Pollution abatement in milk dairy industry. Curr Pharma Res 1:145–152

    Google Scholar 

  • Kushwaha JP, Srivastava VC, Mal ID (2010) Organics removal from dairy wastewater by electrochemical treatment and residue disposal. Sep Purif Technol 76:198–205

    Article  CAS  Google Scholar 

  • Kushwaha JP, Srivastava VC, Mall ID (2011) An overview of various technologies for the treatment of dairy wastewaters. Crit Rev Food Sci Nutr 51:442–452

    Article  CAS  Google Scholar 

  • Lee JF, Liao PM, Tseng DH, Wen PT (1998) Behaviour of organic polymers in drinking water purification. Chemosphere 37:1045–1061

    Article  CAS  Google Scholar 

  • Li Y, Chen YF, Chen P et al (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102:5138–5144

    Article  CAS  Google Scholar 

  • Lincoln EP, Wilkie AC, French BT (1996) Cyanobacterial process for renovating dairy wastewater. Biomass Bioenergy 10:63–68

    Article  CAS  Google Scholar 

  • Loperena L, Ferrari MD, Díaz AL, Travers D et al (2009) Isolation and selection of native microorganisms for the aerobic treatment of simulated dairy wastewaters. Bioresour Technol 100:1762–1766

    Article  CAS  Google Scholar 

  • Lu W, Wang Z, Wang X et al (2015) Cultivation of Chlorella sp. using raw diary wastewater for nutrient removal and biodiesel production: characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures. Bioresour Technol 192:382–388

    Article  CAS  Google Scholar 

  • Luján-Facundo MJ, Mendoza-Roca JA, Cuartas-Uribe B et al (2016) Cleaning efficiency enhancement by ultrasounds for membranes used in dairy industries. Ultrason Sonochem 33:18–25

    Article  CAS  Google Scholar 

  • Luo J, Ding L, Wan Y et al (2011) A two-stage ultrafitration and nanofitration process for recycling dairy wastewater. Bioresour Technol 102:7437–7442

    Article  CAS  Google Scholar 

  • Madoni P (2003) Protozoa as indicators of wastewater treatment efficiency. In: Mara D, Horan N (eds) The handbook of water and wastewater microbiology. Elsevier, London, p 361e371

    Google Scholar 

  • Marungrueng K, Pavasant P (2005) Removal of basic dye (Astrazon Blue FGRL) using microalgae Caulerpa lentllifera. J Environ Manag 78:268–274

    Article  CAS  Google Scholar 

  • Mozaffarian M, Deurwaarder EP, Kersten SRA (2004) Green gas (SNG) production by supercritical gasification of biomass. ECN-C-04-081 ECN-biomass. Energy Research Centre of the Netherlands, Petten

    Google Scholar 

  • Nadias M, Hung YT et al (2010) Anaerobic treatment of milk processing water. In: Wang LK, Tay JH, STL T, Hung YT (eds) Handbook of environmental engineering. Humana press, Springer, New York, pp 555–618

    Google Scholar 

  • Neerackal GM, Ndegwa PM, Beutel MW et al (2016) Potential application of Alcaligenes faecalis strain no. 4 in mitigating ammonia emissions from dairy wastewater. Bioresour Technol 206:36–42

    Article  CAS  Google Scholar 

  • Osada M, Hiyoshi N, Sato O et al (2008) Subcritical water regeneration of supported ruthenium catalyst poisoned by sulfur. Energy Fuel 22:845–849

    Article  CAS  Google Scholar 

  • Pabai F, Kermasha S, Morin A (1996) Use of continuous culture to screen for lipase-producing microorganisms and interesterification of butter fat by lipase isolates. Can J Microbiol 42:446–452

    Article  CAS  Google Scholar 

  • Page LH, Ji-Qin N, Heber AJ, Mosier NS, Liu X, Joo HS, Ndegwa PM, Harrison JH (2014) Characteristics of volatile fatty acids in stored dairy manure before and after anaerobic digestion. Biosyst Eng 118:16–28

    Article  Google Scholar 

  • Passeggi M, Lopez I, Borzacconi L (2012) Modified UASB reactor for dairy industry wastewater: performance indicators and comparison with the traditional approach. J Clean Prod 26:90–94

    Article  CAS  Google Scholar 

  • Porwal HJ, Mane AV, Velhal SG (2015) Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge. Water Resour Ind 9:1–15

    Article  Google Scholar 

  • Qin L, Wang Z, Sun Y et al (2016) Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production. Environ Sci Pollut Res 23:8379–8387

    Article  CAS  Google Scholar 

  • Rajeshkumar K, Jayachandran K (2004) Treatment of dairy wastewater using a selected bacterial isolate, Alcaligenes sp. MMRR7. Appl Biochem Biotechnol 118:65–72

    Article  CAS  Google Scholar 

  • Rajeshwari KV, Balakrishnan M, Kansal A et al (2000) State-of-the-art of anaerobic digestion technology of industrial wastewater treatment. Renew Sustain Energy Rev 4:135–156

    Article  CAS  Google Scholar 

  • Rajpal A, Arora S, Bhatia A et al (2014) Co-treatment of organic fraction of municipal solid waste (OFMSW) and sewage by vermireactor. Ecol Eng 73:154–161

    Article  Google Scholar 

  • Razzak SA, Hossain MM, Lucky RA et al (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing– a review. Renew Sustain Energy Rev 27:622–653

    Article  CAS  Google Scholar 

  • Rusten B, Lundar A, Eide O et al (1993) Chemical pretreatment of dairy wastewater. Water Sci Technol 28:67–76

    Article  CAS  Google Scholar 

  • Samal K, Dash R, Bhunia P (2017) Performance assessment of a Canna Indica assisted vermifiter for synthetic dairy wastewater treatment. Process Saf Environ Prot 111:363–374

    Article  CAS  Google Scholar 

  • Sanz JL, Kochling T (2007) Molecular biology techniques used in wastewater treatment: an overview. Process Biochem 42:119–133

    Article  CAS  Google Scholar 

  • Sarkar B, Chakrabarti PP, Kale V (2006) Wastewater treatment in dairy industries possibility of reuse. Desalination 195:141–152

    Article  CAS  Google Scholar 

  • Saxena A, Tripathi BP, Kumar M et al (2009) Membrane-based techniques for the separation and purification of proteins: an overview. Adv Colloid Interf Sci 145:1–22

    Article  CAS  Google Scholar 

  • Schwarzenbeck N, Borges JM, Wilderer PA (2005) Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Appl Microbiol Biotechnol 66:711–718

    Article  CAS  Google Scholar 

  • Seesuriyachan P, Kuntiya A, Sasaki K et al (2009) Biocoagulation of dairy wastewater by Lactobacillus casei TISTR 1500 for protein recovery using micro-aerobic sequencing batch reactor (micro-aerobic SBR). Process Biochem 44:406–411

    Article  CAS  Google Scholar 

  • Selmer-Olsen E, Ratnaweera HC, Pehrson R (1996) A novel treatment process for dairy wastewater with chitosan produced from shrimp-shell waste. Water Sci Technol 34:33–40

    Article  CAS  Google Scholar 

  • Sengil A, Ozacar M (2006) Treatment of dairy wastewaters by electrocoagulation using mild steel electrodes. J Hazard Mater 137:1197–1205

    Article  CAS  Google Scholar 

  • Shah SB, Bhumbla DK, Basden TJ, Lawrence LD (2002) Cool temperature performance of a wheat straw biofilter for treating dairy wastewater. J Environ Sci Health Part B Pestic Food Contam Agric Wastes 37:493–505

    Article  CAS  Google Scholar 

  • Shete BS, Shinkar NP (2013) Dairy industry wastewater sources, characteristics & its effects on environment. Int J Current Eng Technol 3:1611–1615

    Google Scholar 

  • Sinha RK, Bharambe G, Chaudhari U (2008) Sewage treatment by vermifiltration with synchronous treatment of sludge by earthworms: a low-cost sustainable technology over conventional systems with potential for decentralization. Environment 28:409–420

    Google Scholar 

  • Song Z, Williams CJ, Edyvean RGJ (2004) Treatment of tannery wastewater by chemical coagulation. Desalination 164:249–259

    Article  CAS  Google Scholar 

  • Strydom JP, Mostert JF, Britz TJ (1995) Anaerobic treatment of a synthetic dairy effluent using a hybrid digester. Water SA 21:125–130

    CAS  Google Scholar 

  • Suárez A, Fidalgo T, Riera FA (2014) Recovery of dairy industry wastewaters by reverse osmosis. Prod Boiler Water Sep Purif Technol 133:204–211

    Article  CAS  Google Scholar 

  • Tano-Debrah K, Taniguchi F, Ogura M et al (1999) An inoculum for the aerobic treatment of wastewaters with high concentrations of fats and oils. Bioresour Technol 69:133–139

    Article  CAS  Google Scholar 

  • Tchamango S, Ngameni N-N, Hadjiev ED, Darchen A (2010) Treatment of dairy effluents by electrocoagulation using aluminium electrodes. Sci Total Environ 408:947–952

    Article  CAS  Google Scholar 

  • Terabayashi Y, Sano M, Yamane N et al (2010) Identification and characterization of genes responsible for biosynthesis of kojic acid, an industrially important compound from Aspergillus oryzae. Fungal Genet Biol 47:953–961

    Article  CAS  Google Scholar 

  • Tikariha A, Sahu O (2014) Study of characteristics and treatments of dairy industry wastewater. J Appl Environ Microbiol 2:16–22

    Google Scholar 

  • Tocchi C, Federici E, Fidati L, Manzi R, Vincigurerra V, Petruccioli M (2012) Aerobic treatment of dairy wastewater in an industrial three-reactor plant: effect of aeration regime on performances and on protozoan and bacterial communities. Water Res 46:3334

    Article  CAS  Google Scholar 

  • Tocchi C, Federici E, Scargetta S et al (2013) Dairy wastewater polluting load and treatment performances of an industrial three-cascade-reactor plant. Process Biochem 48:941–944

    Article  CAS  Google Scholar 

  • Tomar P, Suthar S (2011) Urban wastewater treatment using vermin-biofiltration system. Desalination 282:95–103

    Article  CAS  Google Scholar 

  • Ulery AL, Flynn R, Parra R (2004) Appropriate preservation of dairy wastewater samples for environmental analysis. Environ Monit Assess 95:117–124

    Article  CAS  Google Scholar 

  • Uma Rani R, Yeom IT, Banu JR et al (2014) Enhancing the anaerobic digestion potential of dairy waste activated sludge by two step sono-alkalization pretreatment ultrasonics. Sonochemistry 21:1065–1074

    Article  CAS  Google Scholar 

  • Venetsaneas N, Antonopoulou G, Stamatelatou K et al (2009) Using cheese whey for hydrogen and methane in a two-stage continuous process with alternative pH controlling approaches. Bioresour Technol 100:3713–3717

    Article  CAS  Google Scholar 

  • Vourch M, Balannec B, Chaufer B, Dorange G (2005) Nanofiltration and reverse osmosis of model process waters from the dairy industry to produce water for reuse. Desalination 172:245–256

    Article  CAS  Google Scholar 

  • Vourch M, Balannec B, Chaufer B et al (2008) Treatment of dairy industry wastewater by reverse osmosis for water reuse. Sci Direct Desalination 219:190–202

    Article  CAS  Google Scholar 

  • Wakelin NG, Forster CF (1997) An investigation into microbial removal of fats, oils and greases. Bioresour Technol 59:37–43

    Article  CAS  Google Scholar 

  • Wang L, Li Y, Chen P et al (2010a) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol 101:2623–2628

    Article  CAS  Google Scholar 

  • Wang D, Zeng G, Deng J et al (2010b) A full-scale treatment of freeway toll-gate domestic sewage using ecology filter integrated constructed rapid infiltration. Ecol Eng 36:827–831

    Article  Google Scholar 

  • Watanabe N, Ota Y, Minoda Y, Yamada K (1977) Isolation and identification of alkaline lipase producing microorganisms, cultural conditions and some properties of crude enzymes. Agric Biol Chem 41:1353–1358

    CAS  Google Scholar 

  • Williams PT, Onwudili J (2006) Subcritical and supercritical water gasification of cellulose, starch, glucose and biomass waste. Energy Fuel 20:1259–1265

    Article  CAS  Google Scholar 

  • Xing CH, Wen XH, Qian Y, Sun D, Klose PS, Zhang XQ (2003) Fouling and cleaning of microfiltration membrane in municipal wastewater reclamation. Water Sci Technol 47:263–270

    Article  CAS  Google Scholar 

  • Yadavalli R, Heggers GR (2013) Two-stage treatment of dairy effluent using immobilized Chlorella pyrenoidosa. J Environ Health Sci Eng 11:36

    Article  CAS  Google Scholar 

  • Yu Z, Mohn WW (2002) Bioaugmentation with resin acid-degrading bacterium Zoogloea resiniphila DhA-35 to counteract pH stress in an aerated lagoon treating pulp and paper mill effluent. Water Res 36:2793–2801

    Article  CAS  Google Scholar 

  • Zhu LD, Yuan ZH et al (2013) Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production. Bioresour Technol 137:318–325

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ritambhara, Zainab, Vijayaraghavalu, S., Prasad, H.K., Kumar, M. (2019). Treatment and Recycling of Wastewater from Dairy Industry. In: Singh, R., Singh, R. (eds) Advances in Biological Treatment of Industrial Waste Water and their Recycling for a Sustainable Future. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Singapore. https://doi.org/10.1007/978-981-13-1468-1_4

Download citation

Publish with us

Policies and ethics