Skip to main content

Overview of FES-Assisted Cycling Approaches and Their Benefits on Functional Rehabilitation and Muscle Atrophy

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1088))

Abstract

Central nervous system diseases include brain or spinal cord impairments and may result in movement disorders almost always manifested by paralyzed muscles with preserved innervations and therefore susceptible to be activated by electrical stimulation. Functional electrical stimulation (FES)-assisted cycling is an approach mainly used for rehabilitation purposes contributing, among other effects, to restore muscle trophism. FES-assisted cycling has also been adapted for mobile devices adding a leisure and recreational benefit to the physical training. In October 2016, our teams (Freewheels and EMA-trike) took part in FES-bike discipline at the Cybathlon competition, presenting technologies that allow pilots with spinal cord injury to use their paralyzed lower limb muscles to propel a tricycle. Among the many benefits observed and reported in our study cases for the pilots during preparation period, we achieved a muscle remodeling in response to FES-assisted cycling that is discussed in this chapter. Then, we have organized some sections to explore how FES-assisted cycling could contribute to functional rehabilitation by means of changes in the skeletal muscle disuse atrophy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The fundamental nutrition involving the actual metabolic exchanges of the tissues.

  2. 2.

    Pleiotropy is the phenomenon by which one gene influences two or more seemingly unrelated phenotypic traits, i.e., the capacity of a gene having multiple phenotypic expressions.

  3. 3.

    Endurance training refers to aerobic exercise normally involving cyclic movements of a large number of muscles as observed in walking on a treadmill, swimming in a pool, or cycling a bike.

  4. 4.

    Resistance training refers to exercises by which muscular strength is improved as observed during pumping iron gym.

  5. 5.

    The lower motor neuron and the skeletal muscle fibers innervated by that motor neuron’s axonal terminals.

  6. 6.

    Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system’s ability to readily detoxify the reactive intermediates or to repair the resulting damage.

References

  1. Beiter T, Hoene M, Prenzler F, Mooren FC, Steinacker JM, Weigert C et al (2015) Exercise, skeletal muscle and inflammation: ARE-binding proteins as key regulators in inflammatory and adaptive networks. Exerc Immunol Rev 21:42–57

    PubMed  Google Scholar 

  2. Sanchez AMJ, Candau RB, Bernardi H (2014) FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci 71(9):1657–1671

    Article  CAS  Google Scholar 

  3. Aihara M, Hirose N, Katsuta W (2017) A new model of skeletal muscle atrophy induced by immobilization using a hook-and-loop fastener in mice. J Phys Ther Sci:1779–1783

    Article  Google Scholar 

  4. Pigna E, Greco E, Morozzi G, Grottelli S, Rotini A, Minelli A et al (2017) Denervation does not induce muscle atrophy through oxidative stress. Eur J Transl Myol [Internet] 27(1):43–50. Available from: http://www.pagepressjournals.org/index.php/bam/article/view/6406

    Google Scholar 

  5. Kern H, Hofer C, Loefler S, Zampieri S, Gargiulo P, Baba A et al (2017) Atrophy, ultra-structural disorders, severe atrophy and degeneration of denervated human muscle in SCI and aging. Implications for their recovery by functional electrical stimulation, updated 2017. Neurol Res 6412(April):1–7

    Google Scholar 

  6. Oki R, Uchino A, Izumi Y, Ogawa H, Murayama S, Kaji R (2016) An autopsy case of progressive generalized muscle atrophy over 14 years due to post-polio syndrome. Rinsho Shinkeigaku [Internet] 56(1):12–16. Available from: https://www.jstage.jst.go.jp/article/clinicalneurol/56/1/56_cn-000761/_article/-char/ja/

    Article  Google Scholar 

  7. Panisset MG, Galea MP, El-Ansary D (2016) Does early exercise attenuate muscle atrophy or bone loss after spinal cord injury? Spinal Cord [Internet] 54(2):84–92. Available from: https://doi.org/10.1038/sc.2015.150

    Article  Google Scholar 

  8. Fang J, Liu MS, Guan YZ, Du H, Li BH, Cui B et al (2016) Pattern differences of small hand muscle atrophy in amyotrophic lateral sclerosis and mimic disorders. Chin Med J 129(7):792–798

    Article  Google Scholar 

  9. Bargiela A, Cerro-Herreros E, Fernandez-Costa JM, Vilchez JJ, Llamusi B, Artero R (2015) Increased autophagy and apoptosis contribute to muscle atrophy in a myotonic dystrophy type 1 Drosophila model. Dis Model Mech [Internet] 8(7):679–690. Available from: http://dmm.biologists.org/cgi/doi/10.1242/dmm.018127

    Article  CAS  Google Scholar 

  10. Stouth DW, vanLieshout TL, Shen NY, Ljubicic V (2017) Regulation of skeletal muscle plasticity by protein arginine methyltransferases and their potential roles in neuromuscular disorders. Front Physiol 8(November):870

    Article  Google Scholar 

  11. Serum L, Silva-couto MDA, Prado-medeiros CL, Oliveira AB, Alca CC. People With Chronic Stroke 94(7)

    Google Scholar 

  12. Carraro U, Kern H, Gava P, Hofer C, Loefler S, Gargiulo P et al (2015) Biology of muscle atrophy and of its recovery by FES in aging and mobility impairments: roots and by-products. Eur J Transl Myol [Internet] 25(4):221–230. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4748978&tool=pmcentrez&rendertype=abstract

  13. Snijders T, Nederveen JP, McKay BR, Joanisse S, Verdijk LB, van Loon LJC et al (2015) Satellite cells in human skeletal muscle plasticity. Front Physiol 6(OCT):1–21

    Google Scholar 

  14. Kupr B, Handschin C (2015) Complex coordination of cell plasticity by a PGC-1α-controlled transcriptional network in skeletal muscle. Front Physiol 6(NOV):1–7

    Google Scholar 

  15. Handschin C (2010) Regulation of skeletal muscle cell plasticity by the peroxisome proliferator-activated receptor γ coactivator 1α. J Recept Signal Transduct 30(6):376–384

    Article  CAS  Google Scholar 

  16. Schnyder S, Kupr B, Handschin C (2017) Coregulator-mediated control of skeletal muscle plasticity – a mini-review. Biochimie 136:49–54

    Article  CAS  Google Scholar 

  17. Salvini TF, Durigan JLQ, Peviani SM, Russo TL (2012) Effects of electrical stimulation and stretching on the adaptation of denervated skeletal muscle: implications for physical therapy. Rev Bras Fisioter 16(June):175–183

    Article  Google Scholar 

  18. Mohr T, Andersen JL, Biering-Sørensen F, Galbo H, Bangsbo J, Wagner A et al (1997) Long-term adaptation to electrically induced cycle training in severe spinal cord injured individuals. Spinal cord Off J Int Med Soc Paraplegia 35(1):1–16

    Article  CAS  Google Scholar 

  19. McGlory C, Phillips SM (2014) Assessing the regulation of skeletal muscle plasticity in response to protein ingestion and resistance exercise: Recent developments. Curr Opin Clin Nutr Metab Care 17(5):412–417

    Article  Google Scholar 

  20. Margolis LM, Rivas DA (2015) Implications of exercise training and distribution of protein intake on molecular processes regulating skeletal muscle plasticity. Behav Genet 45(2):211–221

    Google Scholar 

  21. Hoppeler H (2016) Molecular networks in skeletal muscle plasticity. J Exp Biol [Internet] 219(2):205–213. Available from: http://jeb.biologists.org/cgi/doi/10.1242/jeb.128207

    Article  Google Scholar 

  22. Sanchez AMJ, Bernardi H, Py G, Candau RB (2014) Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. AJP Regul Integr Comp Physiol [Internet] 307(8):R956–R969. Available from: http://ajpregu.physiology.org/cgi/doi/10.1152/ajpregu.00187.2014

    Article  CAS  Google Scholar 

  23. Price M (2010) Energy expenditure and metabolism during exercise in persons with a spinal cord injury. Sports Med 40(8):681–696

    Article  Google Scholar 

  24. Doucet BM, Lam A, Griffin L (2012) Neuromuscular electrical stimulation for skeletal muscle function. Yale J Biol Med [Internet] 85(2012):201–215. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3375668&tool=pmcentrez&rendertype=abstract

  25. Guimaraes JA, da Fonseca LO, de Sousa AC, Paredes MEG, Brindeiro GA, Bo APL et al (2017) FES Bike Race preparation to Cybathlon 2016 by EMA team: a short case report. Eur J Transl Myol 27(4):7169

    PubMed  PubMed Central  Google Scholar 

  26. Frotzler A, Coupaud S, Perret C, Kakebeeke TH, Hunt KJ, Eser P (2009) Effect of detraining on bone and muscle tissue in subjects with chronic spinal cord injury after a period of electrically-stimulated cycling: a small cohort study. J Rehabil Med 41(4):282–285

    Article  Google Scholar 

  27. Tanhoffer RA, Tanhoffer AIP, Raymond J, Hills AP, Davis GM (2012) Comparison of methods to assess energy expenditure and physical activity in people with spinal cord injury. J Spinal Cord Med [Internet] 35(1):35–45. Available from: http://www.tandfonline.com/doi/full/10.1179/2045772311Y.0000000046

    Article  Google Scholar 

  28. Bodine SC (2013) Disuse-induced muscle wasting. Int J Biochem Cell Biol 45(10):1–17

    Article  Google Scholar 

  29. Hong Z, Sui M, Zhuang Z, Liu H, Zheng X, Cai C et al (2018) Effectiveness of neuromuscular electrical stimulation on lower limb hemiplegic patients following chronic stroke: a systematic review. Arch Phys Med Rehabil [Internet]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29357280

  30. Teixeira-Salmela LF, Olney SJ, Nadeau S, Brouwer B (1999 Oct) Muscle strengthening and physical conditioning to reduce impairment and disability in chronic stroke survivors. Arch Phys Med Rehabil 80(10):1211–1218

    Article  CAS  Google Scholar 

  31. Patten C, Lexell J, Brown HE (2004) Weakness and strength training in persons with poststroke hemiplegia: rationale, method, and efficacy. J Rehabil Res Dev 41(3A):293–312

    Article  Google Scholar 

  32. Finnerup NB (2017) Neuropathic pain and spasticity: intricate consequences of spinal cord injury. Spinal Cord [Internet] (February):1–5. Available from: http://www.nature.com/doifinder/10.1038/sc.2017.70

  33. Rezende-Cunha F, de Oliveira-Souza R (2011) The pyramidal syndrome and the pyramidal tract: a brief historical note. Arq Neuropsiquiatr [Internet] 69(5):836–837. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22042191

    Article  Google Scholar 

  34. Urso ML (2009) Disuse atrophy of human skeletal muscle: cell signaling and potential interventions. Med Sci Sports Exerc 41(10):1860–1868

    Article  Google Scholar 

  35. Naritomi H, Moriwaki H (2013) Prevention of post-stroke disuse muscle atrophy with a free radical scavenger. Clin Recover from CNS Damage 32:139–147

    Article  Google Scholar 

  36. Carda S, Cisari C, Invernizzi M (2013) Sarcopenia or muscle modifications in neurologic diseases: a lexical or patophysiological difference? Eur J Phys Rehabil Med 49(1):119–130

    CAS  PubMed  Google Scholar 

  37. Psatha M, Wu Z, Gammie FM, Ratkevicius A, Wackerhage H, Lee JH et al (2012) A longitudinal MRI study of muscle atrophy during lower leg immobilization following ankle fracture. J Magn Reson Imaging 35(3):686–695

    Article  Google Scholar 

  38. Silva-couto MDA, Prado-Medeiros CL, Oliveira AB, Alcântara CC, Guimarães AT, Salvini TF et al (2014) Muscle atrophy, voluntary activation disturbances, and low serum concentrations of IGF-1 and IGFBR-3 are associated with weakness in people with chronic stroke. Phys Ther 94(7):957–967

    Article  Google Scholar 

  39. Gefen A (2014) Tissue changes in patients following spinal cord injury and implications for wheelchair cushions and tissue loading: a literature review. Ostomy Wound Manage 60(2):34–45

    PubMed  Google Scholar 

  40. Bauman WA, Spungen AM, Adkins RH, Kemp BJ (1999) Metabolic and endocrine changes in persons aging with spinal cord injury. Assist Technol [Internet] 11(2):88–96. Available from: http://www.tandfonline.com/doi/abs/10.1080/10400435.1999.10131993

    Article  CAS  Google Scholar 

  41. Potempa K, Braun LT, Tinkne T, Popovich J (1996) Benefits of aerobic exercise after stroke. Sport Med. 21(5):337–346

    Article  CAS  Google Scholar 

  42. Power PW, Orto AED (2004) Families living with chronic illness and disability: interventions, challenges, and opportunities. Springer Publishing Company, New York, 289 p

    Google Scholar 

  43. Chen HY, Chen SC, Chen JJJ, Fu LL, Wang YL (2005) Kinesiological and kinematical analysis for stroke subjects with asymmetrical cycling movement patterns. J Electromyogr Kinesiol 15(6):587–595

    Article  Google Scholar 

  44. Akkurt H, Karapolat HU, Kirazli Y, Kose T (2017) The effects of upper extremity aerobic exercise in patients with spinal cord injury: a randomized controlled study. Eur J Phys Rehabil Med 53(2):219–227

    PubMed  Google Scholar 

  45. Do Espírito Santo CC, Swarowsky A, Recchia TL, Lopes APF, Ilha J (2015) Is body weight-support treadmill training effective in increasing muscle trophism after traumatic spinal cord injury? A systematic review. Spinal Cord 53(3):176–181

    Article  Google Scholar 

  46. Giangregorio L, Mccartney N (2006) Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies. J Spinal Cord Med 29(5):489–500

    Article  Google Scholar 

  47. Giangregorio L, Craven C, Richards K, Kapadia N, Hitzig SL, Masani K et al (2012) A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: effects on body composition. J Spinal Cord Med 35(5):351–360

    Article  Google Scholar 

  48. Johnston TE, Smith BT, Oladeji O, Betz RR, Lauer RT (2008) Outcomes of a home cycling program using functional electrical stimulation or passive motion for children with spinal cord injury: a case series. J Spinal Cord Med 31(2):215–221

    Article  Google Scholar 

  49. Frotzler A, Coupaud S, Perret C, Kakebeeke TH, Hunt KJ, Donaldson N d N et al (2008) High-volume FES-cycling partially reverses bone loss in people with chronic spinal cord injury. Bone 43(1):169–176

    Article  Google Scholar 

  50. Lopes ACG, Ochoa-Diaz C, Baptista RS, Fonseca LO, Coste CA, Bó APL et al (2016) Electrical stimulation to reduce the overload in upper limbs during sitting pivot transfer in paraplegic: a preliminary study. Eur J Transl Myol 26(4):4–7

    Article  Google Scholar 

  51. Araujo Guimarães J, Oliveira da Fonseca L, Cardoso dos Santos-Couto-Paz C, Padilha Lanari Bó A, Fattal C, Azevedo-Coste C et al (2016) Towards parameters and protocols to recommend FES-Cycling in cases of paraplegia: a preliminary report. Eur J Transl Myol [Internet] 26(3):209–214. Available from: http://www.pagepressjournals.org/index.php/bam/article/view/6085

    Google Scholar 

  52. Dolbow D, Gorgey A, Cifu D, Moore J, Gater D (2011) Feasibility of home-based functional electrical stimulation cycling: case report. Spinal Cord 50(2):170–171

    Article  Google Scholar 

  53. Bo APL, Fonseca L, Guimaraes J, Fachin-Martins E, Gutierrez Paredes ME, Brindeiro GA et al (2017) Cycling with Spinal Cord Injury: A Novel System for Cycling Using Electrical Stimulation for Individuals with Paraplegia, and Preparation for Cybathlon 2016. IEEE Robot Autom Mag 24:58

    Article  Google Scholar 

  54. Fonseca LOD, Bó APL, Guimarães JA, Gutierrez ME, Fachin-Martins E (2017) Cadence tracking and disturbance rejection in functional electrical stimulation cycling for paraplegic subjects: a case study. Artif Organs 41(11):E185

    Article  Google Scholar 

  55. Bae J, Tomizuka M (2011) A gait rehabilitation strategy inspired by an iterative learning algorithm. In: IFAC Proceedings Volumes (IFAC-PapersOnline), pp 2857–2864

    Article  Google Scholar 

  56. Nilsson A, Vreede KS, Häglund V, Kawamoto H, Sankai Y, Borg J (2014) Gait training early after stroke with a new exoskeleton – the hybrid assistive limb: a study of safety and feasibility. J Neuroeng Rehabil [Internet] 92:11. Available from: https://doi.org/10.1186/1743-0003-11-92%5Cnhttps://jneuroengrehab.biomedcentral.com/track/pdf/10.1186/1743-0003-11-92?site=jneuroengrehab.biomedcentral.com

  57. Igo Krebs H, Hogan N, Aisen M, Volpe B (1998) Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng 6(1):75–87

    Article  Google Scholar 

  58. Giangregorio LM, Gibbs JC, Craven BC (2016) Measuring muscle and bone in individuals with neurologic impairment; lessons learned about participant selection and pQCT scan acquisition and analysis. Osteoporos Int 27(8):2433–2446

    Article  CAS  Google Scholar 

  59. Galea MP (2012) Spinal cord injury and physical activity: preservation of the body. Spinal Cord 50(5):344–351

    Article  CAS  Google Scholar 

  60. Fu J, Wang H, Deng L, Li J (2016) Exercise training promotes functional recovery after spinal cord injury. Neural Plast 2016

    Google Scholar 

  61. Martins EF, de Sousa PHC, Barbosa PHFDA, de Menezes LT, Costa AS (2011) A Brazilian experience to describe functioning and disability profiles provided by combined use of ICD and ICF in chronic stroke patients at home-care. Disabil Rehabil [Internet] 33(21–22):2064–2074. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21401335

    Article  Google Scholar 

  62. Sheffler LR, Chae J (2007) Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve [Internet] 35(5):562–590. Available from: http://doi.wiley.com/10.1002/mus.20758

    Article  Google Scholar 

  63. Moe JH, Post HW (1962) Functional electrical stimulation for ambulation in hemiplegia. J Lancet 82:285–288

    CAS  PubMed  Google Scholar 

  64. Pons JL, Raya R, González J (2016) Emerging therapies in neurorehabilitation II, 1st edn. Springer International Publishing, Cham

    Book  Google Scholar 

  65. Hachmann JT, Grahn PJ, Calvert JS, Drubach DI, Lee KH, Lavrov IA (2017) Electrical neuromodulation of the respiratory system after spinal cord injury. Mayo Clin Proc [Internet] 92(9):1401–1414. Available from: https://doi.org/10.1016/j.mayocp.2017.04.011

    Article  Google Scholar 

  66. Creasey GH, Craggs MD (2012) Functional electrical stimulation for bladder, bowel, and sexual function. In: Handbook of clinical neurology, vol 109, 1st edn. Elsevier B.V, Oxford, 247–257 p

    Google Scholar 

  67. Popović DB (2014) Advances in functional electrical stimulation (FES). J Electromyogr Kinesiol 24(6):795–802

    Article  Google Scholar 

  68. Bustamante C, Brevis F, Canales S, Millón S, Pascual R (2016) Effect of functional electrical stimulation on the proprioception, motor function of the paretic upper limb, and patient quality of life: a case report. J Hand Ther [Internet] 29(4):507–514. Available from: https://doi.org/10.1016/j.jht.2016.06.012

    Article  Google Scholar 

  69. Bó APL, Azevedo-Coste C, Geny C, Poignet P, Fattal C (2014) On the use of fixed-intensity functional electrical stimulation for attenuating essential tremor. Artif Organs 38(11):984–991

    Article  Google Scholar 

  70. Pedrocchi A, Ferrante S, Ambrosini E, Gandolla M, Casellato C, Schauer T et al (2013) MUNDUS project: multimodal neuroprosthesis for daily upper limb support. J Neuroeng Rehabil 10(1):1–20

    Article  Google Scholar 

  71. Szecsi J, Schiller M (2009 Jan) FES-propelled cycling of SCI subjects with highly spastic leg musculature. NeuroRehabilitation 24(3):243–253

    CAS  PubMed  Google Scholar 

  72. Mazzoleni S, Stampacchia G, Gerini A, Tombini T, Carrozza MC (2013) FES-cycling training in spinal cord injured patients. In: Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society. pp 5339–5341

    Google Scholar 

  73. Jovic J (2012) Towards a functional assistance in transfer and posture of paraplegics using FES: from simulations to experiments. Université Montpellier 2

    Google Scholar 

  74. LIBERSON WT, HOLMQUEST HJ, SCOT D, DOW M (1961 Feb) Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil 42:101–105

    CAS  PubMed  Google Scholar 

  75. Petrofsky JS, Heaton H, Phillips CA (1983) Outdoor bicycle for exercise in paraplegics and quadriplegics. J Biomed Eng 5(4):292–296

    Article  CAS  Google Scholar 

  76. Horch KW, Dhillon GS (2004) Neuroprosthetics: theory and practice. World Scientific, London, 1263 p

    Book  Google Scholar 

  77. Hunt KJ, Fang J, Saengsuwan J, Grob M, Laubacher M (2012) On the efficiency of FES cycling: a framework and systematic review. Technol Health Care 20(5):395–422

    CAS  PubMed  Google Scholar 

  78. Peng CW, Chen SC, Lai CH, Chen CJ, Chen CC, Mizrahi J et al (2011) Review: clinical benefits of functional electrical stimulation cycling exercise for subjects with central neurological impairments. J Med Biol Eng 31(1):1–11

    Article  Google Scholar 

  79. Davis GM, Servedio FJ, Glaser RM, Gupta SC, Suryaprasad AG (1990) Cardiovascular responses to arm cranking and FNS-induced leg exercise in paraplegics. J Appl Physiol 69(2):671–677

    Article  CAS  Google Scholar 

  80. Fachin-Martins E, Guimarães JA, Lopes ACG, Ramalho SHR, Fonseca LO, Bó APL, et al. (2018) Soluções tecnológicas que incorporaram estimulação elétrica funcional de músculos paralisadors como mecanismo propulsor de produtos assistivos para pessoas com paraplegia. In: Garcia CSNB, Facchinetti LD, editors. PROFISIO Programa de Atualização em Fisioterapia Neurofuncional: Ciclo 5. Artmed Pan. Porto Alegre: ABRAFIN & Secad, pp 33–90

    Google Scholar 

  81. Fonseca LO, Lopes ACG, Ochoa-diaz C, Azevedo-Coste C, Fachin-Martins E, Bó APL (2017) Towards transfers in paraplegia assisted by electrical stimulation and inertial system. IEEE Life Sci Conf:1–4

    Google Scholar 

  82. Coste CA, Mayr W (2017) Functional electrical stimulation. Artif Organs 41(11):997–978

    Article  Google Scholar 

  83. Coste Azevedo C, Wolf P (2018) FES-Cycling at Cybathlon 2016: overview on teams and results. Artif Organs 42(3):336–341

    Article  Google Scholar 

  84. Sijobert B, Fattal C, Daubigney A, Azevedo-Coste C (2017) Participation to the first cybathlon: an overview of the FREEWHEELS team FES-cycling solution. Eur J Transl Myol [Internet] 27(4):7120. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29299223%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5745382

    Google Scholar 

  85. Coste CA, Bergeron V, Berkelmans R, Martins F, Fornusek C, Jetsada A et al (2016) Comparison of strategies and performance of functional electrical stimulation cycling in spinal cord injury pilots for competition in the first ever CYBATHLON. Eur J Transl Myol 27(4):251–254

    Google Scholar 

  86. Ferrante S, Pedrocchi A, Ferrigno G, Molteni F (2008) Cycling induced by functional electrical stimulation improves the muscular strength and the motor control of individuals with post-acute stroke. Europa Medicophysica-SIMFER 2007 Award Winner. Eur J Phys Rehabil Med [Internet] 44(2):159–167. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18418336

    CAS  Google Scholar 

  87. Bauer P, Krewer C, Golaszewski S, Koenig E, Müller F (2015) Functional electrical stimulation-assisted active cycling – therapeutic effects in patients with hemiparesis from 7 days to 6 months after stroke: a randomized controlled pilot study [Internet]. Vol. 96, Archives of Physical Medicine and Rehabilitation. Elsevier Ltd, 188–196 p. Available from: https://doi.org/10.1016/j.apmr.2014.09.033

    Article  Google Scholar 

  88. Gorgey AS, Khalil RE, Lester RM, Dudley GA, Gater DR (2018) Paradigms of lower extremity electrical stimulation training after spinal cord injury. J Vis Exp [Internet] (132):1–11. Available from: https://www.jove.com/video/57000/paradigms-lower-extremity-electrical-stimulation-training-after

  89. Sadowsky CL, Hammond ER, Strohl AB, Commean PK, Eby SA, Damiano DL et al (2013) Lower extremity functional electrical stimulation cycling promotes physical and functional recovery in chronic spinal cord injury. J Spinal Cord Med [Internet] 36(6):623–631. Available from: http://www.tandfonline.com/doi/full/10.1179/2045772313Y.0000000101

    Article  Google Scholar 

  90. Skold C, Lonn L, Harms-Ringdahl K, Hultling C, Levi R, Nash M et al (2002) Effects of functional electrical stimulation training for six months on body composition and spasticity in motor complete tetraplegic spinal cord-injured individuals. J Rehabil Med 34(1):25–32

    Article  Google Scholar 

  91. Scremin AM, Kurta L, Gentili A, Wiseman B, Perell K, Kunkel C et al (1999) Increasing muscle mass in spinal cord injured persons with a functional electrical stimulation exercise program. Arch Phys Med Rehabil 80(12):1531–1536

    Article  CAS  Google Scholar 

  92. McDaniel J, Lombardo LM, Foglyano KM, Marasco PD, Triolo RJ (2017) Setting the pace: insights and advancements gained while preparing for an FES bike race Olivier Lambercy; Roger Gassert. J Neuroeng Rehabil 14(1):1–8

    Article  Google Scholar 

  93. Martin JH (1996) Neuroanatomy: text and atlas, 2nd edn. Lange, Stamford/Appleton, 578 p

    Google Scholar 

  94. Bó APL, Fonseca LO, Guimarães JA, Fachin-Martins E, Paredes MEG, Brindeiro GA et al (2017) Cycling with Spinal Cord Injury: A Novel System for Cycling Using Electrical Stimulation for Individuals with Paraplegia, and Preparation for Cybathlon 2016. IEEE Robot Autom Mag 99(December):1

    Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from CAPES (Call PVE 09/2014, process 88881.068134/2014-01) and INRIA/FAPDF (Process 193.000.639/2015).

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rabelo, M. et al. (2018). Overview of FES-Assisted Cycling Approaches and Their Benefits on Functional Rehabilitation and Muscle Atrophy. In: Xiao, J. (eds) Muscle Atrophy. Advances in Experimental Medicine and Biology, vol 1088. Springer, Singapore. https://doi.org/10.1007/978-981-13-1435-3_26

Download citation

Publish with us

Policies and ethics