Skip to main content

Progress of Genomics in Atherosclerosis-Coronary Heart Disease and Myocardial Infarction

  • Chapter
  • First Online:
Heart Genomics

Part of the book series: Translational Bioinformatics ((TRBIO,volume 16))

  • 426 Accesses

Abstract

Coronary artery disease (CAD) has long been the leading cause of death in the world. It produces great burden on public health and individual life quality. Albeit a complete picture of its biological nature hasn’t been clarified yet, it is acknowledged that CAD, as one of common complex disorders, results from a combination of heritable and environmental factors. In the past decades, the advent and rapid growth of genome-wide association studies (GWASs) for the analysis between phenotypes and genotypes shed light on the heritability underlying CAD. Dozens of risk variants associated with CAD have been identified, and a minority of them present connection with known biological pathways. Nevertheless, it is kept in dispute with respect to whether these substantial and costly projects truly contribute to basic research and clinical utility. Hereinafter, we summarized major findings in genetic architecture of CAD, challenges, and prospects of GWASs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAD:

Coronary artery disease

CARDIoGRAM:

Coronary artery disease genome-wide replication and meta-analysis

CHD:

Coronary heart disease

CNV:

Copy-number variations

CVD:

Cardiovascular disease

EWAS:

Epigenome-wide association study

FDR:

False discovery rate

FH:

Familial hypercholesterolemia

FRS:

Framingham risk score

GRS:

Genetic risk score

GWAS:

Genome-wide association study

IHD:

Ischemic heart disease

LD:

Linkage disequilibrium

LDL:

Low-density lipoprotein

MAF:

Minor allele frequency

MI:

Myocardial infarction

MR:

Mendelian randomization

NGS:

Next-generation sequencing

PCSK9:

Proprotein convertase subtilisin/kexin type 9

PRS:

Polygenic risk score

RRS:

Reynolds risk score

SNP:

Single-nucleotide polymorphism

WES:

Whole exome sequencing

WGS:

Whole-genome sequencing

WTCCC:

Wellcome Trust Case Control Consortium

References

  • Altshuler D, Daly MJ, Lander ES. Genetic mapping in human disease. Science. 2008;322(5903):881–8.

    Article  CAS  Google Scholar 

  • Antiochos P, et al. Association between parental history and genetic risk scores for coronary heart disease prediction: the population-based CoLaus study. Atherosclerosis. 2016;244:59–65.

    Article  CAS  Google Scholar 

  • Assimes TL, Roberts R. Genetics: implications for prevention and management of coronary artery disease. J Am Coll Cardiol. 2016;68(25):2797–818.

    Article  CAS  Google Scholar 

  • Assimes TL, et al. Susceptibility locus for clinical and subclinical coronary artery disease at chromosome 9p21 in the multi-ethnic ADVANCE study. Hum Mol Genet. 2008;17(15):2320–8.

    Article  CAS  Google Scholar 

  • Barbalic M, et al. Large-scale genomic studies reveal central role of ABO in sP-selectin and sICAM-1 levels. Hum Mol Genet. 2010;19(9):1863–72.

    Article  CAS  Google Scholar 

  • Barth AS, Tomaselli GF. Gene scanning and heart attack risk. Trends Cardiovasc Med. 2016;26(3):260–5.

    Article  CAS  Google Scholar 

  • Benjamin EJ, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146–603.

    Article  Google Scholar 

  • Benson MD, et al. Genetic architecture of the cardiovascular risk proteome. Circulation. 2018;137(11):1158–72.

    Article  Google Scholar 

  • Bentzon JF, et al. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852–66.

    Article  CAS  Google Scholar 

  • Bergmark C, et al. A novel function of lipoprotein [a] as a preferential carrier of oxidized phospholipids in human plasma. J Lipid Res. 2008;49(10):2230–9.

    Article  CAS  Google Scholar 

  • Björkegren J, et al. Genome-wide significant loci: how important are they? Systems genetics to understand heritability of coronary artery disease and other common complex disorders. J Am Coll Cardiol. 2015;65(8):830–45.

    Article  Google Scholar 

  • Boerwinkle E, et al. Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations. J Clin Invest. 1992;90(1):52–60.

    Article  CAS  Google Scholar 

  • Brænne I, et al. Prediction of causal candidate genes in coronary artery disease loci. Arterioscler Thromb Vasc Biol. 2015;35(10):2207–17.

    Article  Google Scholar 

  • Broadbent HM, et al. Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet. 2008;17(6):806–14.

    Article  CAS  Google Scholar 

  • Cao Q, et al. HDAC9 represses cholesterol efflux and generation of alternatively activated macrophages in atherosclerosis development. Arterioscler Thromb Vasc Biol. 2014;34(9):1871–9.

    Article  CAS  Google Scholar 

  • Chasman DI. Peering into the future of CAD genomics. Circ Res. 2018;122(3):391–3.

    Article  CAS  Google Scholar 

  • Chasman DI, et al. Forty-three loci associated with plasma lipoprotein size, concentration, and cholesterol content in genome-wide analysis. PLoS Genet. 2009;5(11):e1000730.

    Article  Google Scholar 

  • Chatterjee N, et al. Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies. Nat Genet. 2013;45(4):400–5. 405e1–3

    Article  CAS  Google Scholar 

  • Choi M, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106(45):19096–101.

    Article  CAS  Google Scholar 

  • Chow CK, et al. Parental history and myocardial infarction risk across the world: the INTERHEART study. J Am Coll Cardiol. 2011;57(5):619–27.

    Article  Google Scholar 

  • de Vries PS, et al. Incremental predictive value of 152 single nucleotide polymorphisms in the 10-year risk prediction of incident coronary heart disease: the Rotterdam study. Int J Epidemiol. 2015;44(2):682–8.

    Article  Google Scholar 

  • Deloukas P, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45(1):25–33.

    Article  CAS  Google Scholar 

  • Dentali F, et al. ABO blood group and vascular disease: an update. Semin Thromb Hemost. 2014;40(1):49–59.

    CAS  PubMed  Google Scholar 

  • Duan L, et al. Epigenetic mechanisms in coronary artery disease: the current state and prospects. Trends Cardiovasc Med. 2017. https://doi.org/10.1016/j.tcm.2017.12.012.

    Article  CAS  Google Scholar 

  • Duan L, et al. The role of DNA methylation in coronary artery disease. Gene. 2018;646:91–7.

    Article  CAS  Google Scholar 

  • Dupont C, Armant DR, Brenner CA. Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med. 2009;27(5):351–7.

    Article  CAS  Google Scholar 

  • Eckel RH. Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N Engl J Med. 1989;320(16):1060–8.

    Article  CAS  Google Scholar 

  • Elliott P, et al. Genetic loci associated with C-reactive protein levels and risk of coronary heart disease. JAMA. 2009;302(1):37–48.

    Article  CAS  Google Scholar 

  • Erqou S, et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA. 2009;302(4):412–23.

    Article  CAS  Google Scholar 

  • Ference BA, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459–72.

    Article  Google Scholar 

  • GBD, C.O.D.C. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet (London, England). 2017;390(10100):1151–210.

    Article  Google Scholar 

  • GBD, D.A.I.I. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211–59.

    Google Scholar 

  • Goldstein BA, et al. Simple, standardized incorporation of genetic risk into non-genetic risk prediction tools for complex traits: coronary heart disease as an example. Front Genet. 2014;5:254.

    Article  Google Scholar 

  • Guay SP, et al. ABCA1 gene promoter DNA methylation is associated with HDL particle profile and coronary artery disease in familial hypercholesterolemia. Epigenetics. 2012;7(5):464–72.

    Article  CAS  Google Scholar 

  • Gustafsen C, et al. The hypercholesterolemia-risk gene SORT1 facilitates PCSK9 secretion. Cell Metab. 2014;19(2):310–8.

    Article  CAS  Google Scholar 

  • Hannou SA, et al. Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs? Trends Endocrinol Metab. 2015;26(4):176–84.

    Article  CAS  Google Scholar 

  • Hegele RA. Plasma lipoproteins: genetic influences and clinical implications. Nat Rev Genet. 2009;10(2):109–21.

    Article  CAS  Google Scholar 

  • Huang X, et al. High-throughput genotyping by whole-genome resequencing. Genome Res. 2009;19(6):1068–76.

    Article  CAS  Google Scholar 

  • Huang Y, et al. Relationship between chemokine (C-X-C motif) ligand 12 gene variant (rs1746048) and coronary heart disease: case-control study and meta-analysis. Gene. 2013;521(1):38–44.

    Article  CAS  Google Scholar 

  • International HapMap Consortium. A haplotype map of the human genome. Nature. 2005;437(7063):1299–320.

    Article  Google Scholar 

  • Jaiswal S, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377(2):111–21.

    Article  Google Scholar 

  • Jenkins PV, O'Donnell JS. ABO blood group determines plasma von Willebrand factor levels: a biologic function after all? Transfusion. 2006;46(10):1836–44.

    Article  CAS  Google Scholar 

  • Johansen CT, Lanktree MB, Hegele RA. Translating genomic analyses into improved management of coronary artery disease. Futur Cardiol. 2010;6(4):507–21.

    Article  CAS  Google Scholar 

  • Kamstrup PR, et al. Extreme lipoprotein(a) levels and risk of myocardial infarction in the general population: the Copenhagen City Heart Study. Circulation. 2008;117(2):176–84.

    Article  CAS  Google Scholar 

  • Kathiresan S, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. 2009;41(3):334–41.

    Article  CAS  Google Scholar 

  • Khera AV, et al. Association of rare and common variation in the lipoprotein lipase gene with coronary artery disease. JAMA. 2017;317(9):937–46.

    Article  CAS  Google Scholar 

  • Kjolby M, et al. Sort1, encoded by the cardiovascular risk locus 1p13.3, is a regulator of hepatic lipoprotein export. Cell Metab. 2010;12(3):213–23.

    Article  CAS  Google Scholar 

  • Lanktree MB, et al. Comprehensive analysis of genomic variation in the LPA locus and its relationship to plasma lipoprotein(a) in South Asians, Chinese, and European Caucasians. Circ Cardiovasc Genet. 2010;3(1):39–46.

    Article  CAS  Google Scholar 

  • Larsson SC, Burgess S, Michaëlsson K. Association of genetic variants related to serum calcium levels with coronary artery disease and myocardial infarction. JAMA. 2017;318(4):371–80.

    Article  CAS  Google Scholar 

  • Lawlor DA, et al. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133–63.

    Article  Google Scholar 

  • Lee JY, et al. A genome-wide association study of a coronary artery disease risk variant. J Hum Genet. 2013;58(3):120–6.

    Article  CAS  Google Scholar 

  • Lempiäinen H, et al. Network analysis of coronary artery disease risk genes elucidates disease mechanisms and druggable targets. Sci Rep. 2018;8(1):3434.

    Article  Google Scholar 

  • Lu X, et al. Exome chip meta-analysis identifies novel loci and East Asian-specific coding variants that contribute to lipid levels and coronary artery disease. Nat Genet. 2017;49(12):1722–30.

    Article  CAS  Google Scholar 

  • McCarroll SA, et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet. 2008;40(10):1166–74.

    Article  CAS  Google Scholar 

  • McPherson R, Tybjaerg-Hansen A. Genetics of coronary artery disease. Circ Res. 2016;118(4):564–78.

    Article  CAS  Google Scholar 

  • McPherson R, et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316(5830):1488–91.

    Article  CAS  Google Scholar 

  • Mega JL, et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy. Lancet (London, England). 2015;385(9984):2264–71.

    Article  CAS  Google Scholar 

  • Mehta NN, et al. The novel atherosclerosis locus at 10q11 regulates plasma CXCL12 levels. Eur Heart J. 2011;32(8):963–71.

    Article  CAS  Google Scholar 

  • Mehta NN, et al. Higher plasma CXCL12 levels predict incident myocardial infarction and death in chronic kidney disease: findings from the Chronic Renal Insufficiency Cohort study. Eur Heart J. 2014;35(31):2115–22.

    Article  CAS  Google Scholar 

  • Musunuru K, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010;466(7307):714–9.

    Article  CAS  Google Scholar 

  • Nadeau JH, Dudley AM. Genetics. Systems genetics. Science. 2011;331(6020):1015–6.

    Article  Google Scholar 

  • Nikpay M, et al. A comprehensive 1,000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47(10):1121–30.

    Article  CAS  Google Scholar 

  • Patel KM, et al. Macrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis. Circ Res. 2011;116(5):789.

    Article  Google Scholar 

  • Paul DS, Beck S. Advances in epigenome-wide association studies for common diseases. Trends Mol Med. 2014;20(10):541–3.

    Article  CAS  Google Scholar 

  • Pertea M, Salzberg SL. Between a chicken and a grape: estimating the number of human genes. Genome Biol. 2010;11(5):206.

    Article  Google Scholar 

  • Preuss M, et al. Design of the Coronary ARtery DIsease Genome-Wide Replication And Meta-Analysis (CARDIoGRAM) study: a genome-wide association meta-analysis involving more than 22 000 cases and 60 000 controls. Circ Cardiovasc Genet. 2010;3(5):475–83.

    Article  CAS  Google Scholar 

  • Prins BP, et al. Genetics of coronary artery disease: genome-wide association studies and beyond. Atherosclerosis. 2012;225(1):1–10.

    Article  CAS  Google Scholar 

  • Qi L, et al. Genetic variants in ABO blood group region, plasma soluble E-selectin levels and risk of type 2 diabetes. Hum Mol Genet. 2010;19(9):1856–62.

    Article  CAS  Google Scholar 

  • Reilly MP, et al. Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies. Lancet. 2011;377(9763):383–92.

    Article  CAS  Google Scholar 

  • Ridker PM, et al. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA. 2007;297(6):611–9.

    Article  CAS  Google Scholar 

  • Ridker PM, et al. C-reactive protein and parental history improve global cardiovascular risk prediction: the Reynolds Risk Score for men. Circulation. 2008;118(22):2243–51. 4p following 2251

    Article  CAS  Google Scholar 

  • Salfati E, et al. Susceptibility loci for clinical coronary artery disease and subclinical coronary atherosclerosis throughout the life-course. Circ Cardiovasc Genet. 2015;8(6):803–11.

    Article  CAS  Google Scholar 

  • Samani NJ, et al. Genome wide association analysis of coronary artery disease. N Engl J Med. 2007;357(5):443–53.

    Article  CAS  Google Scholar 

  • Schmidt K, et al. Structure, function, and genetics of lipoprotein (a). J Lipid Res. 2016;57(8):1339–59.

    Article  CAS  Google Scholar 

  • Sekula P, et al. Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrol. 2016;27(11):3253–65.

    Article  Google Scholar 

  • Sivapalaratnam S, et al. Family history of premature coronary heart disease and risk prediction in the EPIC-Norfolk prospective population study. Heart. 2010;96(24):1985–9.

    Article  Google Scholar 

  • Smith ZD, et al. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature. 2012;484(7394):339–44.

    Article  CAS  Google Scholar 

  • Stankiewicz P, Lupski JR. Structural variation in the human genome and its role in disease. Annu Rev Med. 2010;61:437–55.

    Article  CAS  Google Scholar 

  • Stone NJ, et al. Coronary artery disease in 116 kindred with familial type II hyperlipoproteinemia. Circulation. 1974;49(3):476–88.

    Article  CAS  Google Scholar 

  • Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–5.

    Article  CAS  Google Scholar 

  • Teo YY, Small KS, Kwiatkowski DP. Methodological challenges of genome-wide association analysis in Africa. Nat Rev Genet. 2010;11(2):149–60.

    Article  CAS  Google Scholar 

  • Thomas DC, Conti DV. Commentary: the concept of ‘Mendelian Randomization’. Int J Epidemiol. 2004;33(1):21–5.

    Article  Google Scholar 

  • Veldkamp CT, et al. Monomeric structure of the cardioprotective chemokine SDF-1/CXCL12. Protein Sci. 2009;18(7):1359–69.

    Article  CAS  Google Scholar 

  • Visel A, et al. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature. 2010;464(7287):409–12.

    Article  CAS  Google Scholar 

  • Visscher PM, et al. Five years of GWAS discovery. Am J Hum Genet. 2012;90(1):7–24.

    Article  CAS  Google Scholar 

  • Visscher PM, et al. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101(1):5–22.

    Article  CAS  Google Scholar 

  • Voight BF, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380(9841):572–80.

    Article  CAS  Google Scholar 

  • Wilson PW, et al. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97(18):1837–47.

    Article  CAS  Google Scholar 

  • WTCCC. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.

    Article  Google Scholar 

  • Yamamoto A, et al. Clinical features of familial hypercholesterolemia. Arteriosclerosis. 1989;9(1 Suppl):I66.

    CAS  PubMed  Google Scholar 

  • Zernecke A, Weber C. Chemokines in the vascular inflammatory response of atherosclerosis. Cardiovasc Res. 2010;86(2):192–201.

    Article  CAS  Google Scholar 

  • Zhou L, et al. Associations between single nucleotide polymorphisms on chromosome 9p21 and risk of coronary heart disease in Chinese Han population. Arterioscler Thromb Vasc Biol. 2008;28(11):2085–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yuan, J., Liu, Y. (2018). Progress of Genomics in Atherosclerosis-Coronary Heart Disease and Myocardial Infarction. In: Jiang, H., Liu, M. (eds) Heart Genomics. Translational Bioinformatics, vol 16. Springer, Singapore. https://doi.org/10.1007/978-981-13-1429-2_8

Download citation

Publish with us

Policies and ethics