Skip to main content

Circular RNAs in Cardiovascular Diseases

  • Chapter
  • First Online:
Circular RNAs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1087))

Abstract

Circular RNAs (circRNAs), a group of circular RNA molecules with a 3′,5′-phosphodiester bond at the junction site, are generated by back-splicing of precursor mRNAs. Most of the circular RNAs originate from the exon region of the encoded protein, and some are derived from intron regions, antisense transcripts, or long noncoding RNAs. Circular RNAs are abundantly in eukaryotic transcriptome and participate in various biological processes. It is closely associated with various diseases such as tumors, diabetes, nervous system diseases, and cardiovascular diseases. In cardiovascular system, numerous circRNAs have been identified and involved in important processes of cardiovascular development and diseases. Here we will review the latest research progress of circular RNA in cardiovascular diseases. Also, we will outline the specific examples of circRNAs involved in cardiovascular system regulatory effects, including act as miRNA sponges, interaction with RNA-binding proteins, regulated by RNA-binding proteins and serve as biomarkers. In addition, potential mechanisms underlying the regulatory role of circRNAs in cardiovascular diseases will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Capel B, Swain A, Nicolis S et al (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73(5):1019–1030

    Article  CAS  PubMed  Google Scholar 

  2. Cocquerelle C, Daubersies P, Majerus MA et al (1992) Splicing with inverted order of exons occurs proximal to large introns. EMBO J 11(3):1095–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cocquerelle C, Mascrez B, Hetuin D et al (1993) Mis-splicing yields circular RNA molecules. FASEB J 7(1):155–160

    Article  CAS  PubMed  Google Scholar 

  4. Salzman J, Gawad C, Wang PL et al (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7(2):e30733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu C, Shi X, Wang AY et al (2018) RNA-Seq profiling of circular RNAs in human laryngeal squamous cell carcinomas. Mol Cancer 17(1):86

    Article  PubMed  PubMed Central  Google Scholar 

  6. AbouHaidar MG, Venkataraman S, Golshani A et al (2014) Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt. Proc Natl Acad Sci USA 111(40):14542–14547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Salzman J, Chen RE, Olsen MN et al (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9(9):e1003777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barrett SP, Wang PL, Salzman J (2015) Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife 4:e07540

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Starke S, Jost I, Rossbach O et al (2015) Exon circularization requires canonical splice signals. Cell Rep 10(1):103–111

    Article  CAS  PubMed  Google Scholar 

  10. Wilusz JE (2015) Repetitive elements regulate circular RNA biogenesis. Mob Genet Elements 5(3):1–7

    Article  PubMed  CAS  Google Scholar 

  11. Liang D, Tatomer DC, Luo Z et al (2017) The output of protein-coding genes shifts to circular RNAs when the Pre-mRNA processing machinery is limiting. Mol Cell 68(5):940–954 e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilusz J (2015) Circular RNA and splicing: skip happens. J Mol Biol 427(15):2411–2413

    Article  CAS  PubMed  Google Scholar 

  13. Liang D, Wilusz JE (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28(20):2233–2247

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Zhang XO, Wang HB, Zhang Y et al (2014) Complementary sequence-mediated exon circularization. Cell 159(1):134–147

    Article  CAS  PubMed  Google Scholar 

  15. Ashwal-Fluss R, Meyer M, Pamudurti NR et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66

    Article  CAS  PubMed  Google Scholar 

  16. Conn SJ, Pillman KA, Toubia J et al (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160(6):1125–1134

    Article  CAS  PubMed  Google Scholar 

  17. Ivanov A, Memczak S, Wyler E et al (2015) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10(2):170–177

    Article  CAS  PubMed  Google Scholar 

  18. Li Z, Huang C, Bao C et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Zhang XO, Chen T et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806

    Article  CAS  PubMed  Google Scholar 

  20. Yang L, Han B, Zhang Y et al (2018) Engagement of circular RNA HECW2 in the nonautophagic role of ATG5 implicated in the endothelial-mesenchymal transition. Autophagy 14(3):404–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zheng Q, Bao C, Guo W et al (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7:11215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin SP, Ye S, Long Y et al (2016) Circular RNA expression alterations are involved in OGD/R-induced neuron injury. Biochem Biophys Res Commun 471(1):52–56

    Article  CAS  PubMed  Google Scholar 

  23. Veno MT, Hansen TB, Veno ST et al (2015) Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol 16:245

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Szabo L, Morey R, Palpant NJ et al (2015) Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol 16:126

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Lukiw WJ (2013) Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Genet 4:307

    PubMed  PubMed Central  Google Scholar 

  26. You X, Vlatkovic I, Babic A et al (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qu S, Zhong Y, Shang R et al (2017) The emerging landscape of circular RNA in life processes. RNA Biol 14(8):992–999

    Article  PubMed  Google Scholar 

  28. Salzman J (2016) Circular RNA expression: its potential regulation and function. Trends Genet 32(5):309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qu S, Yang X, Li X et al (2015) Circular RNA: a new star of noncoding RNAs. Cancer Lett 365(2):141–148

    Article  CAS  PubMed  Google Scholar 

  30. Chen LL, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12(4):381–388

    Article  PubMed  PubMed Central  Google Scholar 

  31. Barrett SP, Salzman J (2016) Circular RNAs: analysis, expression and potential functions. Development 143(11):1838–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17(4):205–211

    Article  CAS  PubMed  Google Scholar 

  33. de Bruin RG, Rabelink TJ, van Zonneveld AJ et al (2017) Emerging roles for RNA-binding proteins as effectors and regulators of cardiovascular disease. Eur Heart J 38(18):1380–1388

    PubMed  Google Scholar 

  34. Fischer JW, Leung AK (2017) CircRNAs: a regulator of cellular stress. Crit Rev Biochem Mol Biol 52(2):220–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Viereck J, Thum T (2017) Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ Res 120(2):381–399

    Article  CAS  PubMed  Google Scholar 

  36. Du WW, Zhang C, Yang W et al (2017) Identifying and characterizing circRNA-protein interaction. Theranostics 7(17):4183–4191

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cheng S, Vasan RS (2011) Advances in the epidemiology of heart failure and left ventricular remodeling. Circulation 124(20):e516–e519

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dorn GW 2nd (2007) The fuzzy logic of physiological cardiac hypertrophy. Hypertension 49(5):962–970

    Article  CAS  PubMed  Google Scholar 

  39. Han B, Chao J, Yao H (2018) Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther. https://doi.org/10.1016/j.pharmthera.2018.01.010

    Article  CAS  Google Scholar 

  40. Viereck J, Thum T (2017) Long noncoding RNAs in pathological cardiac remodeling. Circ Res 120(2):262–264

    Article  CAS  PubMed  Google Scholar 

  41. Burchfield JS, Xie M, Hill JA (2013) Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation 128(4):388–400

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tan WL, Lim BT, Anene-Nzelu CG et al (2017) A landscape of circular RNA expression in the human heart. Cardiovasc Res 113(3):298–309

    PubMed  Google Scholar 

  43. Werfel S, Nothjunge S, Schwarzmayr T et al (2016) Characterization of circular RNAs in human, mouse and rat hearts. J Mol Cell Cardiol 98:103–107

    Article  CAS  PubMed  Google Scholar 

  44. Wang K, Long B, Liu F et al (2016) A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 37(33):2602–2611

    Article  CAS  PubMed  Google Scholar 

  45. Chen CZ, Li L, Lodish HF et al (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303(5654):83–86

    Article  CAS  PubMed  Google Scholar 

  46. O’Connell RM, Zhao JL, Rao DS (2011) MicroRNA function in myeloid biology. Blood 118(11):2960–2969

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Gao Y, Lin L, Li T et al (2017) The role of miRNA-223 in cancer: function, diagnosis and therapy. Gene 616:1–7

    Article  CAS  PubMed  Google Scholar 

  48. Johnnidis JB, Harris MH, Wheeler RT et al (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451(7182):1125–1129

    Article  CAS  PubMed  Google Scholar 

  49. Lu H, Buchan RJ, Cook SA (2010) MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res 86(3):410–420

    Article  CAS  PubMed  Google Scholar 

  50. Parikh NI, Gona P, Larson MG et al (2009) Long-term trends in myocardial infarction incidence and case fatality in the National Heart, Lung, and Blood Institute’s Framingham Heart study. Circulation 119(9):1203–1210

    Article  PubMed  PubMed Central  Google Scholar 

  51. Saparov A, Ogay V, Nurgozhin T et al (2017) Role of the immune system in cardiac tissue damage and repair following myocardial infarction. Inflamm Res 66(9):739–751

    Article  CAS  PubMed  Google Scholar 

  52. Oerlemans MI, Koudstaal S, Chamuleau SA et al (2013) Targeting cell death in the reperfused heart: pharmacological approaches for cardioprotection. Int J Cardiol 165(3):410–422

    Article  PubMed  Google Scholar 

  53. Nahrendorf M, Pittet MJ, Swirski FK (2010) Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121(22):2437–2445

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hansen TB, Kjems J, Damgaard CK (2013) Circular RNA and miR-7 in cancer. Cancer Res 73(18):5609–5612

    Article  CAS  PubMed  Google Scholar 

  55. Peng L, Yuan XQ, Li GC (2015) The emerging landscape of circular RNA ciRS-7 in cancer (Review). Oncol Rep 33(6):2669–2674

    Article  CAS  PubMed  Google Scholar 

  56. Piwecka M, Glazar P, Hernandez-Miranda LR et al (2017) Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357(6357)

    Article  PubMed  CAS  Google Scholar 

  57. Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  CAS  PubMed  Google Scholar 

  58. Geng HH, Li R, Su YM et al (2016) The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One 11(3):e0151753

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Tondera D, Czauderna F, Paulick K et al (2005) The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells. J Cell Sci 118(Pt 14):3049–3059

    Article  CAS  PubMed  Google Scholar 

  60. Tondera D, Santel A, Schwarzer R et al (2004) Knockdown of MTP18, a novel phosphatidylinositol 3-kinase-dependent protein, affects mitochondrial morphology and induces apoptosis. J Biol Chem 279(30):31544–31555

    Article  CAS  PubMed  Google Scholar 

  61. Wang K, Gan TY, Li N et al (2017) Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death Differ 24(6):1111–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Segura AM, Frazier OH, Buja LM (2014) Fibrosis and heart failure. Heart Fail Rev 19(2):173–185

    Article  CAS  PubMed  Google Scholar 

  63. Tang CM, Zhang M, Huang L et al (2017) CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci Rep 7:40342

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Zhou B, Yu JW (2017) A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-beta1. Biochem Biophys Res Commun 487(4):769–775

    Article  CAS  PubMed  Google Scholar 

  65. Du WW, Yang W, Liu E et al (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44(6):2846–2858

    Article  PubMed  PubMed Central  Google Scholar 

  66. Du WW, Yang W, Chen Y et al (2017) Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 38(18):1402–1412

    PubMed  Google Scholar 

  67. Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169(3):381–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Seong HA, Jung H, Choi HS et al (2005) Regulation of transforming growth factor-beta signaling and PDK1 kinase activity by physical interaction between PDK1 and serine-threonine kinase receptor-associated protein. J Biol Chem 280(52):42897–42908

    Article  CAS  PubMed  Google Scholar 

  69. Zeng Y, Du WW, Wu Y et al (2017) A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics 7(16):3842–3855

    Article  PubMed  PubMed Central  Google Scholar 

  70. Burd CE, Jeck WR, Liu Y et al (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6(12):e1001233

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Holdt LM, Stahringer A, Sass K et al (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Grimm T, Holzel M, Rohrmoser M et al (2006) Dominant-negative Pes1 mutants inhibit ribosomal RNA processing and cell proliferation via incorporation into the PeBoW-complex. Nucleic Acids Res 34(10):3030–3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rohrmoser M, Holzel M, Grimm T et al (2007) Interdependence of Pes1, Bop1, and WDR12 controls nucleolar localization and assembly of the PeBoW complex required for maturation of the 60S ribosomal subunit. Mol Cell Biol 27(10):3682–3694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Holzel M, Grimm T, Rohrmoser M et al (2007) The BRCT domain of mammalian Pes1 is crucial for nucleolar localization and rRNA processing. Nucleic Acids Res 35(3):789–800

    Article  PubMed  CAS  Google Scholar 

  75. Errichelli L, Dini Modigliani S, Laneve P et al (2017) FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun 8:14741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bayfield OW, Chen CS, Patterson AR et al (2012) Trp RNA-binding attenuation protein: modifying symmetry and stability of a circular oligomer. PLoS One 7(9):e44309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gupta SK, Garg A, Bar C et al (2018) Quaking inhibits doxorubicin-mediated cardiotoxicity through regulation of cardiac circular RNA expression. Circ Res 122(2):246–254

    Article  CAS  PubMed  Google Scholar 

  78. Khan MA, Reckman YJ, Aufiero S et al (2016) RBM20 regulates circular RNA production from the Titin gene. Circ Res 119(9):996–1003

    CAS  PubMed  Google Scholar 

  79. Guo W, Schafer S, Greaser ML et al (2012) RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat Med 18(5):766–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Boeckel JN, Jae N, Heumuller AW et al (2015) Identification and characterization of hypoxia-regulated endothelial circular RNA. Circ Res 117(10):884–890

    Article  CAS  PubMed  Google Scholar 

  81. Yan L, Feng J, Cheng F et al (2018) Circular RNA expression profiles in placental villi from women with gestational diabetes mellitus. Biochem Biophys Res Commun 498(4):743–750

    Article  CAS  PubMed  Google Scholar 

  82. Xu H, Gong Z, Shen Y et al (2018) Circular RNA expression in extracellular vesicles isolated from serum of patients with endometrial cancer. Epigenomics 10(2):187–197

    Article  CAS  PubMed  Google Scholar 

  83. Li T, Shao Y, Fu L et al (2018) Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection. J Mol Med (Berl) 96(1):85–96

    Article  CAS  Google Scholar 

  84. Zheng F, Yu X, Huang J et al (2017) Circular RNA expression profiles of peripheral blood mononuclear cells in rheumatoid arthritis patients, based on microarray chip technology. Mol Med Rep 16(6):8029–8036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wu N, Jin L, Cai J (2017) Profiling and bioinformatics analyses reveal differential circular RNA expression in hypertensive patients. Clin Exp Hypertens 39(5):454–459

    Article  CAS  PubMed  Google Scholar 

  86. Alhasan AA, Izuogu OG, Al-Balool HH et al (2016) Circular RNA enrichment in platelets is a signature of transcriptome degradation. Blood 127(9):e1–e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li Y, Zheng Q, Bao C et al (2015) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25(8):981–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bahn JH, Zhang Q, Li F et al (2015) The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem 61(1):221–230

    Article  CAS  PubMed  Google Scholar 

  89. Hang D, Zhou J, Qin N et al (2018) A novel plasma circular RNA circFARSA is a potential biomarker for non-small cell lung cancer. Cancer Med. https://doi.org/10.1002/cam4.1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang S, Zeng X, Ding T et al (2018) Microarray profile of circular RNAs identifies hsa_circ_0014130 as a new circular RNA biomarker in non-small cell lung cancer. Sci Rep 8(1):2878

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. Tan S, Gou Q, Pu W et al (2018) Circular RNA F-circEA produced from EML4-ALK fusion gene as a novel liquid biopsy biomarker for non-small cell lung cancer. Cell Res. https://doi.org/10.1038/s41422-018-0033-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sun H, Tang W, Rong D et al (2018) Hsa_circ_0000520, a potential new circular RNA biomarker, is involved in gastric carcinoma. Cancer Biomark 21(2):299–306

    Article  CAS  PubMed  Google Scholar 

  93. Li H, Li K, Lai W et al (2018) Comprehensive circular RNA profiles in plasma reveals that circular RNAs can be used as novel biomarkers for systemic lupus erythematosus. Clin Chim Acta 480:17–25

    Article  CAS  PubMed  Google Scholar 

  94. Chen B, Huang S (2018) Circular RNA: an emerging non-coding RNA as a regulator and biomarker in cancer. Cancer Lett 418:41–50

    Article  CAS  PubMed  Google Scholar 

  95. Iparraguirre L, Munoz-Culla M, Prada-Luengo I et al (2017) Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis. Hum Mol Genet 26(18):3564–3572

    Article  CAS  PubMed  Google Scholar 

  96. Xuan L, Qu L, Zhou H et al (2016) Circular RNA: a novel biomarker for progressive laryngeal cancer. Am J Transl Res 8(2):932–939

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Qin M, Liu G, Huo X et al (2016) Hsa_circ_0001649: a circular RNA and potential novel biomarker for hepatocellular carcinoma. Cancer Biomark 16(1):161–169

    Article  CAS  PubMed  Google Scholar 

  98. Li P, Chen S, Chen H et al (2015) Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta 444:132–136

    Article  CAS  PubMed  Google Scholar 

  99. Vausort M, Salgado-Somoza A, Zhang L et al (2016) Myocardial infarction-associated circular RNA predicting left ventricular dysfunction. J Am Coll Cardiol 68(11):1247–1248

    Article  PubMed  Google Scholar 

  100. Deng Y-YaZ, Weiping and She, Jianqing and Zhang, Lisa and Chen, Tao and Zhou, Juan and Yuan, Zu-Yi (2016) GW27-e1167 circular RNA related to PPARγ function as ceRNA of microRNA in human acute myocardial infarction. J Am Coll Cardiol 68:C51–C52

    Google Scholar 

  101. Zhao Z, Li X, Gao C et al (2017) Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease. Sci Rep 7:39918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jakobi T, Czaja-Hasse LF, Reinhardt R et al (2016) Profiling and validation of the circular RNA repertoire in adult murine hearts. Genomics Proteomics Bioinformatics 14(4):216–223

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wu HJ, Zhang CY, Zhang S et al (2016) Microarray expression profile of circular RNAs in heart tissue of mice with myocardial infarction-induced heart failure. Cell Physiol Biochem 39(1):205–216

    Article  CAS  PubMed  Google Scholar 

  104. Abe N, Matsumoto K, Nishihara M et al (2015) Rolling circle translation of circular RNA in living human cells. Sci Rep 5:16435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Abe N, Hiroshima M, Maruyama H et al (2013) Rolling circle amplification in a prokaryotic translation system using small circular RNA. Angew Chem Int Ed Engl 52(27):7004–7008

    Article  CAS  PubMed  Google Scholar 

  106. Wang Y, Wang Z (2015) Efficient backsplicing produces translatable circular mRNAs. RNA 21(2):172–179

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  107. Pamudurti NR, Bartok O, Jens M et al (2017) Translation of CircRNAs. Mol Cell 66(1):9–21 e27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yang Y, Fan X, Mao M et al (2017) Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res 27(5):626–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yang Y, Gao X, Zhang M et al (2018) Novel role of FBXW7 circular RNA in repressing Glioma tumorigenesis. J Natl Cancer Inst 110(3)

    Google Scholar 

  110. Legnini I, Di Timoteo G, Rossi F et al (2017) Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66(1):22–37 e29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lenk K, Erbs S, Hollriegel R et al (2012) Exercise training leads to a reduction of elevated myostatin levels in patients with chronic heart failure. Eur J Prev Cardiol 19(3):404–411

    Article  PubMed  Google Scholar 

  112. Wei X, Liu X, Rosenzweig A (2015) What do we know about the cardiac benefits of exercise? Trends Cardiovasc Med 25(6):529–536

    Article  CAS  PubMed  Google Scholar 

  113. Fleg JL, Cooper LS, Borlaug BA et al (2015) Exercise training as therapy for heart failure: current status and future directions. Circ Heart Fail 8(1):209–220

    Article  PubMed  PubMed Central  Google Scholar 

  114. Lerchenmuller C, Rosenzweig A (2014) Mechanisms of exercise-induced cardiac growth. Drug Discov Today 19(7):1003–1009

    Article  CAS  PubMed  Google Scholar 

  115. Fujimoto N, Prasad A, Hastings JL et al (2010) Cardiovascular effects of 1 year of progressive and vigorous exercise training in previously sedentary individuals older than 65 years of age. Circulation 122(18):1797–1805

    Article  PubMed  PubMed Central  Google Scholar 

  116. Young DR, Reynolds K, Sidell M et al (2014) Effects of physical activity and sedentary time on the risk of heart failure. Circ Heart Fail 7(1):21–27

    Article  PubMed  Google Scholar 

  117. Weeks KL, McMullen JR (2011) The athlete’s heart vs. the failing heart: can signaling explain the two distinct outcomes? Physiology (Bethesda) 26(2):97–105

    CAS  Google Scholar 

  118. Calvert JW, Condit ME, Aragon JP et al (2011) Exercise protects against myocardial ischemia-reperfusion injury via stimulation of beta(3)-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols. Circ Res 108(12):1448–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. McMullen JR, Amirahmadi F, Woodcock EA et al (2007) Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy. Proc Natl Acad Sci USA 104(2):612–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. McMullen JR, Shioi T, Zhang L et al (2003) Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc Natl Acad Sci USA 100(21):12355–12360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. DeBosch B, Treskov I, Lupu TS et al (2006) Akt1 is required for physiological cardiac growth. Circulation 113(17):2097–2104

    Article  CAS  PubMed  Google Scholar 

  122. Zou J, Li H, Chen X et al (2014) C/EBPbeta knockdown protects cardiomyocytes from hypertrophy via inhibition of p65-NFkappaB. Mol Cell Endocrinol 390(1–2):18–25

    Article  CAS  PubMed  Google Scholar 

  123. Bostrom P, Mann N, Wu J et al (2010) C/EBPbeta controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell 143(7):1072–1083

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  124. Bernardo BC, Ooi JY, Lin RC et al (2015) miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Med Chem 7(13):1771–1792

    Article  CAS  PubMed  Google Scholar 

  125. Yang L, Li Y, Wang X et al (2016) Overexpression of miR-223 tips the balance of pro- and anti-hypertrophic signaling cascades toward physiologic cardiac hypertrophy. J Biol Chem 291(30):15700–15713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu X, Xiao J, Zhu H et al (2015) miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab 21(4):584–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Shi J, Bei Y, Kong X et al (2017) miR-17-3p contributes to exercise-induced cardiac growth and protects against myocardial ischemia-reperfusion injury. Theranostics 7(3):664–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank members of the Cardiac Regeneration and Ageing Lab in Shanghai University for the discussion. Due to space restrictions, the authors cannot cite all the relevant literature in the field. The authors apologize to those colleagues whose work contributed significantly. This work was supported by the grants from the National Natural Science Foundation of China (81722008, 91639101, and 81570362 to JJ Xiao), the Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-09-E00042 to JJ Xiao), the grant from the Science and Technology Commission of Shanghai Municipality (17010500100 to JJ Xiao), and the development fund for Shanghai talents (to JJ Xiao).

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, L., Meng, X., Li, G., Zhou, Q., Xiao, J. (2018). Circular RNAs in Cardiovascular Diseases. In: Xiao, J. (eds) Circular RNAs. Advances in Experimental Medicine and Biology, vol 1087. Springer, Singapore. https://doi.org/10.1007/978-981-13-1426-1_15

Download citation

Publish with us

Policies and ethics