Skip to main content

CAMISS Concept and Its Clinical Application

  • Chapter
  • First Online:
Intelligent Orthopaedics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1093))

Abstract

This chapter intends to provide an overview of computer-assisted minimally invasive spine surgery (CAMISS) and its clinical application. Since minimally invasive spine surgery was first brought out, the concept of decreasing the damage to patient was soon become popular. However, without the proper surgical field, the spine surgery can be very dangerous. The minimally invasive concept was restricted in promotion until the computer-assisted navigation system break down the obstacles. The CAMISS technique achieves better clinical outcomes with the advantages of smaller invasion, less injury, and better recovery and also became the gold standard for spine surgery. The spatial distribution concept and the respiration-induced motion concept help in promoting the accuracy and safety of the CAMISS concept. The CAMISS concept also facilitated the developing of robotic techniques, which was considered as the future of orthopedic surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiltse LL, Bateman JG, Hutchinson RH, Nelson WE (1968) The paraspinal sacrospinalis-splitting approach to the lumbar spine. J Bone Joint Surg Am 50:919–926

    Article  CAS  PubMed  Google Scholar 

  2. Olivier E, Beldame J, Ould Slimane M, Defives T, Duparc F (2006) Comparison between one midline cutaneous incision and two lateral incisions in the lumbar paraspinal approach by Wiltse: a cadaver study. Surg Radiol Anat 28:494–497

    Article  PubMed  Google Scholar 

  3. Hansen L, de Zee M, Rasmussen J, Andersen TB, Wong C, Simonsen EB (2006) Anatomy and biomechanics of the back muscles in the lumbar spine with reference to biomechanical modeling. Spine 31:1888–1899

    Article  PubMed  Google Scholar 

  4. Foley KT, Lefkowitz MA (2002) Advances in minimally invasive spine surgery. Clin Neuro-Surg 49:499–517

    Google Scholar 

  5. Kim CW, Siemionow K, Anderson DG, Phillips FM (2011) The current state of minimally invasive spine surgery. J Bone Joint Surg Am 93:582–596

    PubMed  Google Scholar 

  6. Lee KH, Yue WM, Yeo W, Soeharno H, Tan SB (2012) Clinical and radiological outcomes of open versus minimally invasive transforaminal lumbar interbody fusion. Eur Spine J 21:2265–2270

    Article  PubMed Central  PubMed  Google Scholar 

  7. Shunwu F, Xing Z, Fengdong Z, Xiangqian F (2010) Minimally invasive transforaminal lumbar interbody fusion for the treatment of degenerative lumbar diseases. Spine 35:1615–1620

    Article  PubMed  Google Scholar 

  8. Park Y, Ha JW (2007) Comparison of one-level posterior lumbar interbody fusion performed with a minimally invasive approach or a traditional open approach. Spine 32:537–543

    Article  PubMed  Google Scholar 

  9. Stevens KJ, Spenciner DB, Griffiths KL et al (2006) Comparison of minimally invasive and conventional open posterolateral lumbar fusion using magnetic resonance imaging and retraction pressure studies. J Spinal Disord Tech 19:77–86

    Article  PubMed  Google Scholar 

  10. Boucher HH (1959) A method of spinal fusion. J Bone Joint Surg Br 41-B:248–259

    Article  CAS  PubMed  Google Scholar 

  11. Roy-Camille R, Saillant G, Mazel C (1986) Internal fixation of the lumbar spine with pedi-cle screw plating. Clin Orthop Relat Res:7–17

    Google Scholar 

  12. Schwender JD, Holly LT, Rouben DP, Foley KT (2005) Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility and initial results. J Spinal Disord Tech 18(Suppl):S1–S6

    Article  PubMed  Google Scholar 

  13. Tian NF, Wu YS, Zhang XL, Xu HZ, Chi YL, Mao FM (2013) Minimally invasive versus open transforaminal lumbar interbody fusion: a meta-analysis based on the current evidence. Eur Spine J 22: 1741–1749

    Article  PubMed Central  PubMed  Google Scholar 

  14. Ferrick MR, Kowalski JM, Simmons ED Jr (1997) Reliability of roentgenogram evaluation of pedicle screw position. Spine 22:1249–1252; discussion 53

    Article  CAS  PubMed  Google Scholar 

  15. Lee JC, Jang HD, Shin BJ (2012) Learning curve and clinical outcomes of minimally invasive transforaminal lumbar interbody fusion: our experience in 86 consecutive cases. Spine 37:1548–1557

    Article  PubMed  Google Scholar 

  16. Liu Y, Zhao J, Fan M, Lv Y, Liu W, Tian W (2016) Clinical factors affecting the accuracy of a CT-based active infrared navigation system. Int J Med Robot 12:568–571

    Article  PubMed  Google Scholar 

  17. Rampersaud YR, Simon DA, Foley KT (2001) Accuracy requirements for image-guided spinal pedicle screw placement. Spine 26:352–359

    Article  CAS  PubMed  Google Scholar 

  18. Sengupta DK, Herkowitz HN (2005) Degenerative spondylolisthesis: review of current trends and controversies. Spine 30:S71–S81

    Article  PubMed  Google Scholar 

  19. Kwoh YS, Hou J, Jonckheere EA, Hayati S (1988) A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Bio-med Eng 35:153–160

    Article  CAS  Google Scholar 

  20. Santos-Munné JJPM, Stulberg SD et al (1995) A stereotactic/ robotic system for pedicle screw placement. In: Morgan K, Satava R, Sieburg H et al (eds) Proceedings of the medicine meets virtual reality III conference. IOS Press/Ohmsha, San Diego, pp 326–333

    Google Scholar 

  21. Karthik K, Colegate-Stone T, Dasgupta P, Tavakkolizadeh A, Sinha J (2015) Robotic surgery in trauma and orthopaedics: a systematic review. Bone Joint J 97-B:292–299

    Article  CAS  PubMed  Google Scholar 

  22. Jakopec M, Harris SJ, Rodriguezy Baena F, Gomes P, Cobb J, Davies BL (2001) The first clinical application of a "hands-on" robotic knee surgery system. Comput Aided Surg 6: 329–339

    Article  CAS  PubMed  Google Scholar 

  23. Lonner JH (2009) Introduction: robotic arm-assisted unicompartmental knee arthroplasty. Am J Orthop 38:2

    PubMed  Google Scholar 

  24. Tian W (2016) Robot-assisted posterior c1-2 transarticular screw fixation for atlantoaxial instability: a case report. Spine 41(Suppl 19):B2–B5

    Article  PubMed  Google Scholar 

  25. Tian W, Wang H, Liu YJ (2016) Robot-assisted anterior odontoid screw fixation: a case report. Orthop Surg 8:400–404

    Article  PubMed Central  PubMed  Google Scholar 

  26. Lang Z, Tian W, Liu Y, Liu B, Yuan Q, Sun Y (2016) Minimally invasive pedicle screw fixation using intraoperative 3-dimensional fluoroscopy-based navigation (CAMISS technique) for hangman fracture. Spine 41:39–45

    Article  PubMed  Google Scholar 

  27. Kehlet H (2011) Fast-track surgery-an update on physiological care principles to enhance recovery. Langenbecks Arch Surg 396: 585–590

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tian, W., Liu, Y., Fan, M., Zhao, J., Jin, P., Zeng, C. (2018). CAMISS Concept and Its Clinical Application. In: Zheng, G., Tian, W., Zhuang, X. (eds) Intelligent Orthopaedics. Advances in Experimental Medicine and Biology, vol 1093. Springer, Singapore. https://doi.org/10.1007/978-981-13-1396-7_3

Download citation

Publish with us

Policies and ethics