Skip to main content

The CMS High-Granularity Calorimeter for Operation at the High-Luminosity LHC

  • Conference paper
  • First Online:
Proceedings of International Conference on Technology and Instrumentation in Particle Physics 2017 (TIPP 2017)

Abstract

The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5 to 1 cm\(^2\) cell size, with the remainder of the HCAL based on highly-segmented scintillators with SiPM readout. The intrinsic high-precision timing capabilities of the silicon sensors will add an extra dimension to event reconstruction, especially in terms of pileup rejection. An overview of the HGCAL project is presented, covering motivation, engineering design, readout and trigger concepts, and expected performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    EE stands for “Endcap Electromagnetic” calorimeter, FH for “Front Hadronic” calorimeter and BH for “Back Hadronic” calorimeter.

  2. 2.

    Whether the active thickness is best reached via deep diffusion, physical thinning or an epitaxial layer is currently under study.

References

  1. The CMS Collaboration: The CMS experiment at the CERN LHC. J. Instrum. 3(08), S08004 (2008). http://stacks.iop.org/1748-0221/3/i=08/a=S08004

  2. Contardo, D., Klute, M., Mans, J., Silvestris, L., Butler, J.: Technical proposal for the phase-II upgrade of the CMS detector. Technical report, CERN-LHCC-2015-010. LHCC-P-008. CMS-TDR-15-02, Geneva, June 2015. https://cds.cern.ch/record/2020886

  3. Curras, E., et al.: Radiation hardness and precision timing study of silicon detectors for the CMS high granularity calorimeter (HGC). Nucl. Instr. Meth. Phys. Res. A 845, 60–63 (2017). http://www.sciencedirect.com/science/article/pii/S0168900216303679. proceedings of the Vienna Conference on Instrumentation 2016

  4. The CALICE Collaboration: Construction and commissioning of the CALICE analog hadron calorimeter prototype. J. Instrum. 5(05), P05004 (2010). http://stacks.iop.org/1748-0221/5/i=05/a=P05004

  5. Borg, J., et al.: Skiroc2CMS an ASIC for testing CMS HGCAL. J. Instrum. 12(02), C02019 (2017). http://stacks.iop.org/1748-0221/12/i=02/a=C02019

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Florian Pitters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pitters, F., On behalf of the CMS collaboration. (2018). The CMS High-Granularity Calorimeter for Operation at the High-Luminosity LHC. In: Liu, ZA. (eds) Proceedings of International Conference on Technology and Instrumentation in Particle Physics 2017. TIPP 2017. Springer Proceedings in Physics, vol 213. Springer, Singapore. https://doi.org/10.1007/978-981-13-1316-5_2

Download citation

Publish with us

Policies and ethics