Skip to main content

Arsenic Toxicity: A South Asian Perspective

  • Chapter
  • First Online:
Mechanisms of Arsenic Toxicity and Tolerance in Plants

Abstract

Arsenic (As) toxicity has become one of the most significant abiotic threats to agriculture and human health. Owing to various natural and anthropogenic activities, the circulation of As among various reservoirs has increased over the past several decades. Though present throughout the world, South Asian region is particularly affected by it. A major portion of the people living in the region is dependent upon agriculture for their livelihood, and they utilize untreated water for dietary consumption. Moreover, the ability of As to accumulate in the plant body increases the chances of the urban and rural populations to be exposed to the metalloid. The metalloid uses a number of molecular mechanisms which causes adverse reactions in plants and animals. In order to control the detrimental effects of As, effective interventional strategies need to devised and implemented. Various physical, chemical, and biological processes can be employed for the purpose. This chapter reviews the geographical patterns of As toxicity in South Asia. The adverse aspects of As toxicity have then been provided followed by the proposed interventional strategies that can be employed for decreasing the As-associated toxicity in South Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACR:

Arsenate reductase

AMF:

Arbuscular mycorrhizal fungi

As:

Arsenic

ATF:

Activating transcription factor 6

CHO:

Chinese hamster ovary

CKD:

Chronic kidney disease

CO2 :

Carbon dioxide

DMA:

Dimethylarsinic acid

DNA:

Deoxyribonucleic acid

EPA:

US Environmental Protection Agency

FAO:

Food and Agriculture Organization

FTCD:

Forminidoyl transferase cyclodeaminase

GLUT:

Glucose transporters

GSH:

Glutathione

GWAS:

Genome-wide association study

IARC:

International Agency for Research on Cancer

IRE:

Inositol-requiring enzyme

MAO:

Trimethylarsine oxide

MCL:

Maximum contaminant limit

mg:

Milligram

MMA:

Monomethylarsonic acid

NAC:

N-Acetylcysteine

NAPDH:

Nicotinamide adenine dinucleotide phosphate

NIPs:

Nodulin26-like intrinsic proteins

P:

Phosphorus

PERK:

PKR-like endoplasmic reticulum kinase

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RuBisCO:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

SNP:

Single nucleotide polymorphism

tHcys:

Total homocysteine

UNICEF:

United Nations Children’s Fund

UPR:

Unfolded protein response

WAT:

White adipose tissue

WHO:

World Health Organization

Zn:

Zinc

μg:

Microgram

References

  • Abdul KSM, Jayasinghe SS, Chandana EP, Jayasumana C, De Silva PMC (2015) Arsenic and human health effects: a review. Environ Toxicol Pharmacol 40:828–846

    PubMed  Google Scholar 

  • Abernathy CO, Liu Y-P, Longfellow D, Aposhian HV, Beck B, Fowler B, Goyer R, Menzer R, Rossman T, Thompson C (1999) Arsenic: health effects, mechanisms of actions, and research issues. Environ Health Perspect 107:593–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed ZU, Panaullah GM, Gauch H, McCouch SR, Tyagi W, Kabir MS, Duxbury JM (2011) Genotype and environment effects on rice (Oryza sativa L.) grain arsenic concentration in Bangladesh. Plant Soil 338:367–382

    Article  CAS  Google Scholar 

  • Ahuja S (2008) Arsenic contamination of groundwater: a worldwide problem. In: UNESCO Conference on Water Scarcity, Global Changes, and Groundwater Management Responses. Citeseer, pp 1–5

    Google Scholar 

  • Alamdar A, Eqani SAMAS, Ali SW, Sohail M, Bhowmik AK, Cincinelli A, Subhani M, Ghaffar B, Ullah R, Huang Q (2016) Human Arsenic exposure via dust across the different ecological zones of Pakistan. Ecotoxicol Environ Saf 126:219–227

    Article  CAS  PubMed  Google Scholar 

  • Argos M, Ahsan H, Graziano JH (2012) Arsenic and human health: epidemiologic progress and public health implications. Rev Environ Health 27:191–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armendariz AL, Talano MA, Travaglia C, Reinoso H, Oller ALW, Agostini E (2016) Arsenic toxicity in soybean seedlings and their attenuation mechanisms. Plant Physiol Biochem 98:119–127

    Article  CAS  PubMed  Google Scholar 

  • Azam SMGG, Sarker TC, Naz S (2016) Factors affecting the soil arsenic bioavailability, accumulation in rice and risk to human health: a review. Toxicol Mech Methods 26:565–579. https://doi.org/10.1186/s40200-014-0117-y

    Article  PubMed  Google Scholar 

  • Bahadar H, Mostafalou S, Abdollahi M (2014) Growing burden of diabetes in Pakistan and the possible role of arsenic and pesticides. J Diabetes Metab Disord 13:117. https://doi.org/10.1186/s40200-014-0117-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Banerjee S, Mahanty A, Mohanty S, Mazumder DG, Cash P, Mohanty BP (2017) Identification of potential biomarkers of hepatotoxicity by plasma proteome analysis of arsenic-exposed carp Labeo rohita. J Hazard Mater 336:71–80

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya P, Samal A, Majumdar J, Santra S (2010) Arsenic contamination in rice, wheat, pulses, and vegetables: a study in an arsenic affected area of West Bengal, India. Water Air Soil Pollut 213:3–13

    Article  CAS  Google Scholar 

  • Brahman KD, Kazi TG, Afridi HI, Baig JA, Arain SS, Talpur FN, Kazi AG, Ali J, Panhwar AH, Arain MB (2016) Exposure of children to arsenic in drinking water in the Tharparkar region of Sindh, Pakistan. Sci Total Environ 544:653–660

    Article  CAS  PubMed  Google Scholar 

  • Brammer H (2009) Mitigation of arsenic contamination in irrigated paddy soils in South and South-east Asia. Environ Int 35:856–863

    Article  CAS  PubMed  Google Scholar 

  • Brammer H, Ravenscroft P (2009) Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia. Environ Int 35:647–654

    Article  CAS  PubMed  Google Scholar 

  • Ceja-Galicia ZA, Daniel A, Salazar AM, Pánico P, Ostrosky-Wegman P, Díaz-Villaseñor A (2017) Effects of arsenic on adipocyte metabolism: is arsenic an obesogen? Mol Cell Endocrinol 452:25–32

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti D, Rahman MM, Ahamed S, Dutta RN, Pati S, Mukherjee SC (2016) Arsenic groundwater contamination and its health effects in Patna district (capital of Bihar) in the middle Ganga plain, India. Chemosphere 152:520–529

    CAS  PubMed  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  PubMed  Google Scholar 

  • Das D, Chatterjee A, Samanta G, Mandal B, Chowdhury TR, Samanta G, Chowdhury PP, Chanda C, Basu G, Lodh D (1994) Report. Arsenic contamination in groundwater in six districts of West Bengal, India: the biggest arsenic calamity in the world. Analyst 119:168–170

    Article  Google Scholar 

  • Dixit G, Singh AP, Kumar A, Singh PK, Kumar S, Dwivedi S, Trivedi PK, Pandey V, Norton GJ, Dhankher OP (2015) Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. J Hazard Mat 298:241–251

    Article  CAS  Google Scholar 

  • El-Saad AMA, Al-Kahtani MA, Abdel-Moneim AM (2016) N-acetylcysteine and meso-2, 3-dimercaptosuccinic acid alleviate oxidative stress and hepatic dysfunction induced by sodium arsenite in male rats. Drug Des Dev Ther 10:3425. https://doi.org/10.2147/DDDT.S115339

    Article  Google Scholar 

  • Engström KS, Nermell B, Concha G, Strömberg U, Vahter M, Broberg K (2009) Arsenic metabolism is influenced by polymorphisms in genes involved in one-carbon metabolism and reduction reactions. Mutat Res 667:4–14

    Article  Google Scholar 

  • Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182. https://doi.org/10.3389/fphys.2012.00182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadgil A, Roy J, Addy S, Das A, Miller S, Dutta A, Deb-Sarkar A (2012) Addressing arsenic poisoning in south Asia. Solutions 5:40–45

    Google Scholar 

  • Gamble MV, Liu X, Ahsan H, Pilsner JR, Ilievski V, Slavkovich V, Parvez F, Levy D, Factor-Litvak P, Graziano JH (2005) Folate, homocysteine, and arsenic metabolism in arsenic-exposed individuals in Bangladesh. Environ Health Perspect 113:1683. https://doi.org/10.1289/ehp.8084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9:303–321

    CAS  Google Scholar 

  • Hajduch M, Rakwal R, Agrawal GK, Yonekura M, Pretova A (2001) High-resolution two-dimensional electrophoresis separation of proteins from metal-stressed rice (Oryza sativa L.) leaves: drastic reductions/fragmentation of ribulose-1, 5-bisphosphate carboxylase/oxygenase and induction of stress-related proteins. Electrophoresis 22:2824–2831

    Article  CAS  PubMed  Google Scholar 

  • Haque R, Chaudhary A, Sadaf N (2017) Immunomodulatory role of arsenic in regulatory T cells. Endocr Metab Immune Disord Drug Targets 17:176–181

    Article  CAS  PubMed  Google Scholar 

  • Hassan FI, Niaz K, Khan F, Maqbool F, Abdollahi M (2017) The relation between rice consumption, arsenic contamination, and prevalence of diabetes in South Asia. EXCLI J 16:1132. https://doi.org/10.17179/excli2017-222

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Q, Xi G, Alamdar A, Zhang J, Shen H (2017) Comparative proteomic analysis reveals heart toxicity induced by chronic arsenic exposure in rats. Environ Pollut 229:210–218

    Article  CAS  PubMed  Google Scholar 

  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2004) Some drinking-water disinfectants and contaminants, including arsenic. IARC Monogr Eval Carcinog Risks Hum 84:1–477

    PubMed Central  Google Scholar 

  • Intarasunanont P, Navasumrit P, Waraprasit S, Chaisatra K, Suk WA, Mahidol C, Ruchirawat M (2012) Effects of arsenic exposure on DNA methylation in cord blood samples from newborn babies and in a human lymphoblast cell line. Environ Health 11:31. https://doi.org/10.1186/1476-069X-11-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam S, Rahman MM, Islam M, Naidu R (2016) Arsenic accumulation in rice: consequences of rice genotypes and management practices to reduce human health risk. Environ Int 96:139–155

    Article  CAS  PubMed  Google Scholar 

  • Jain C, Singh R (2012) Technological options for the removal of arsenic with special reference to South East Asia. J Environ Manag 107:1–18

    Article  CAS  Google Scholar 

  • Jayasumana C, Gunatilake S, Siribaddana S (2015) Simultaneous exposure to multiple heavy metals and glyphosate may contribute to Sri Lankan agricultural nephropathy. BMC Nephrol 16:103. https://doi.org/10.1186/s12882-015-0109-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juhasz AL, Smith E, Weber J, Rees M, Rofe A, Kuchel T, Sansom L, Naidu R (2006) In vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment. Environ Health Perspect 114:1826. https://doi.org/10.1289/ehp.9322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khairul I, Wang QQ, Jiang YH, Wang C, Naranmandura H (2017) Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget 8:23905. https://doi.org/10.18632/oncotarget.14733

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinniburgh D, Smedley P (2001) Arsenic contamination of groundwater in Bangladesh. British Geological Survey, London

    Google Scholar 

  • Kuo C-C, Moon KA, Wang S-L, Silbergeld E, Navas-Acien A (2017) The association of arsenic metabolism with cancer, cardiovascular disease and diabetes: a systematic review of the epidemiological evidence environmental health perspectives. Environ Health Perspect 125:087001–087001

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee C-G, Alvarez PJJ, Nam A, Park SJ, Do T, Choi US, Lee SH (2017) Arsenic (V) removal using an amine-doped acrylic ion exchange fiber: kinetic, equilibrium, and regeneration studies. J Hazard Mater 325:223–229

    Article  CAS  PubMed  Google Scholar 

  • Li S, Pu H, Wang H (2008) Advances in the study of effects of arsenic on plant photosynthesis. Soil 40:330–366

    Google Scholar 

  • Li C, Xu J, Li F, Chaudhary SC, Weng Z, Wen J, Elmets CA, Ahsan H, Athar M (2011) Unfolded protein response signaling and MAP kinase pathways underlie pathogenesis of arsenic-induced cutaneous inflammation. Cancer Prev Res 4:2101–2109

    Article  CAS  Google Scholar 

  • Lu T-H, Tseng T-J, Su C-C, Tang F-C, Yen C-C, Liu Y-Y, Yang C-Y, Wu C-C, Chen K-L, Hung D-Z (2014) Arsenic induces reactive oxygen species-caused neuronal cell apoptosis through JNK/ERK-mediated mitochondria-dependent and GRP 78/CHOP-regulated pathways. Toxicol Lett 224:130–140

    Article  CAS  PubMed  Google Scholar 

  • Maharjan M, Shrestha RR, Ahmad SA, Watanabe C, Ohtsuka R (2006) Prevalence of arsenicosis in Terai, Nepal. J Health Popul Nutr 24:246–252

    PubMed  Google Scholar 

  • Maharjan M, Watanabe C, Ahmad SA, Umezaki M, Ohtsuka R (2007) Mutual interaction between nutritional status and chronic arsenic toxicity due to groundwater contamination in an area of Terai, lowland Nepal. J Epidemiol Community Health 61:389–394

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazumdar M (2017) Does arsenic increase the risk of neural tube defects among a highly exposed population? A new case–control study in Bangladesh. Birth Defects Res 109:92–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee A, Sengupta MK, Hossain MA, Ahamed S, Das B, Nayak B, Lodh D, Rahman MM, Chakraborti D (2006) Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J Health Popul Nutr 24:142–163

    PubMed  Google Scholar 

  • Muthayya S, Sugimoto JD, Montgomery S, Maberly GF (2014) An overview of global rice production, supply, trade, and consumption. Ann N Y Acad Sci 1324:7–14

    Article  PubMed  Google Scholar 

  • Nordstrom DK (2002) Worldwide occurrences of arsenic in ground water. Science 296:2143–2145

    Article  CAS  PubMed  Google Scholar 

  • Pierce BL, Kibriya MG, Tong L, Jasmine F, Argos M, Roy S, Paul-Brutus R, Rahaman R, Rakibuz-Zaman M, Parvez F (2012) Genome-wide association study identifies chromosome 10q24. 32 variants associated with arsenic metabolism and toxicity phenotypes in Bangladesh. PLoS Genet 8:e1002522. https://doi.org/10.1371/journal.pgen.1002522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce BL, Tong L, Argos M, Jasmine F, Gamble MV, Graziano J, Kibriya MG, Ahsan H (2017) Abstract LB-159: a missense variant in FTCD is associated with arsenic metabolism efficiency and arsenic toxicity in Bangladesh. AACR

    Google Scholar 

  • Rahman MM, Chowdhury UK, Mukherjee SC, Mondal BK, Paul K, Lodh D, Biswas BK, Chanda CR, Basu GK, Saha KC (2001) Chronic arsenic toxicity in Bangladesh and West Bengal, India—a review and commentary. J Toxicol Clin Toxicol 39:683–700

    Article  CAS  PubMed  Google Scholar 

  • Rahman A, Vahter M, Ekström EC, Rahman M, Golam Mustafa AHM, Wahed MA, Yunus M, Persson LÃ… (2007) Association of arsenic exposure during pregnancy with fetal loss and infant death: a cohort study in Bangladesh. Am J Epidemiol 165:1389–1396

    Article  PubMed  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  PubMed  Google Scholar 

  • Redmon JH, Elledge MF, Womack DS, Wickremashinghe R, Wanigasuriya KP, Peiris-John RJ, Lunyera J, Smith K, Raymer JH, Levine KE (2014) Additional perspectives on chronic kidney disease of unknown aetiology (CKDu) in Sri Lanka–lessons learned from the WHO CKDu population prevalence study. BMC Nephrol 15:125. https://doi.org/10.1186/1471-2369-15-125

    Article  PubMed  PubMed Central  Google Scholar 

  • Sambu S, Wilson R (2008) Arsenic in food and water–a brief history. Toxicol Ind Health 24:217–226

    Article  CAS  PubMed  Google Scholar 

  • Shakoor MB, Niazi NK, Bibi I, Rahman MM, Naidu R, Dong Z, Shahid M, Arshad M (2015) Unraveling health risk and speciation of arsenic from groundwater in rural areas of Punjab, Pakistan. Int J Environ Res Public Health 12:12371–12390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Shi X, Liu KJ (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255:67–78

    Article  CAS  PubMed  Google Scholar 

  • Shraim AM (2017) Rice is a potential dietary source of not only arsenic but also other toxic elements like lead and chromium. Arab J Chem 10:S3434–S3443

    Article  CAS  Google Scholar 

  • Shrestha RR, Shrestha MP, Upadhyay NP, Pradhan R, Khadka R, Maskey A, Maharjan M, Tuladhar S, Dahal BM, Shrestha K (2003) Groundwater arsenic contamination, its health impact and mitigation program in Nepal. J Environ Sci Health, Part A 38:185–200

    Article  Google Scholar 

  • Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf 112:247–270

    Article  CAS  PubMed  Google Scholar 

  • Sinha B, Bhattacharyya K (2015) Arsenic toxicity in rice with special reference to speciation in Indian grain and its implication on human health. J Sci Food Agric 95:1435–1444

    Article  CAS  PubMed  Google Scholar 

  • Smith E, Smith J, Smith L, Biswas T, Correll R, Naidu R (2003) Arsenic in Australian environment: an overview. J Environ Sci Health, Part A 38:223–239

    Article  CAS  Google Scholar 

  • Srivastava RK, Li C, Chaudhary SC, Ballestas ME, Elmets CA, Robbins DJ, Matalon S, Deshane JS, Afaq F, Bickers DR (2013) Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption. Toxicol Appl Pharmacol 272:879–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJ (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    Article  CAS  PubMed  Google Scholar 

  • Tseng C-H (2004) The potential biological mechanisms of arsenic-induced diabetes mellitus. Toxicol Appl Pharmacol 197:67–83

    Article  CAS  PubMed  Google Scholar 

  • U.S. Department of Health and Human Services (2006) The health consequences of involuntary exposure to tobacco smoke: a report of the surgeon General. Atlanta, GA. In: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Coordinating Center for Health Promotion, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health

    Google Scholar 

  • Williams PN, Price AH, Raab A, Hossain SA, Feldmann J, Meharg AA (2005) Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ Sci Technol 39:5531–5540

    Article  CAS  PubMed  Google Scholar 

  • Yen Y-P, Tsai K-S, Chen Y-W, Huang C-F, Yang R-S, Liu S-H (2012) Arsenic induces apoptosis in myoblasts through a reactive oxygen species-induced endoplasmic reticulum stress and mitochondrial dysfunction pathway. Arch Toxicol 86:923–933

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafeez Mujtaba Babar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iftikhar, S., Ali, Z., Khan, D.A., Zaidi, NuS.S., Gul, A., Babar, M.M. (2018). Arsenic Toxicity: A South Asian Perspective. In: Hasanuzzaman, M., Nahar, K., Fujita, M. (eds) Mechanisms of Arsenic Toxicity and Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-1292-2_19

Download citation

Publish with us

Policies and ethics