Skip to main content

Arsenic Uptake and Transportation in Plants

  • Chapter
  • First Online:
Mechanisms of Arsenic Toxicity and Tolerance in Plants

Abstract

The arsenic uptake and translocation systems in plants are dependent on As species. Uptake of inorganic arsenate [Asin(V)] is conducted via specified group of high-affinity phosphate (Pi) transporters belonging to the PHS family, called Pi transporter 1. Recently identified transcription factors involved in the regulation of Asin(V) intake in plants are also described in this chapter. The role of other proteins such as mitochondrial proteins localized to the inner mitochondrial membrane and responsible for dicarboxylate exchange between the mitochondrial matrix and the cytosol or Pi transporter traffic facilitator 1 located in the endoplasmic reticulum (ER) of A. thaliana is not omitted. Uptake of inorganic arsenite [Asin(III)], as well as the organic derivatives of As from environment and distribution in plants, is conducted by channels created by proteins belonging to three of the five plant aquaporin subfamilies called nodulin 26-like intrinsic protein (NIP), membrane (PIP), and tonoplast intrinsic proteins (TIP). The significance of ABC (ATP-binding cassette) transporters which are responsible for transferring of Asin(III)-phytochelatin complexes across the tonoplast to the vacuole as well as the role of transporters responsible for inositol uptake in As translocation from the xylem into the phloem is explained. Additionally, the meaning of some elements like S, Si, and Fe in As influx in plants is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abascal F, Irisarri I, Zardoya R (2014) Diversity and evolution of membrane intrinsic proteins. Biochim Biophys Acta 1840:1468–1481

    Article  CAS  PubMed  Google Scholar 

  • Abbas MHH, Meharg AA (2008) Arsenate, arsenite and dimethyl arsenic acid (DMA) uptake and tolerance in maize (Zea mays L.). Plant Soil 304:277–289

    Article  CAS  Google Scholar 

  • Abbas G, Murtaza B, Bibi I et al (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 15:59. https://doi.org/10.3390/ijerph15010059

    Article  CAS  PubMed Central  Google Scholar 

  • Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acosta JA, Arocena JM, Faz A (2015) Speciation of arsenic in bulk and rhizosphere soils from artisanal cooperative mines in Bolivia. Chemosphere 138:1014–1020

    Article  CAS  PubMed  Google Scholar 

  • Ali W, Isner JC, Isayenkov SV et al (2012) Heterologous expression of the yeast arsenite efflux system ACR3 improves Arabidopsis thaliana tolerance to arsenic stress. New Phytol 194:716–723

    Article  CAS  PubMed  Google Scholar 

  • Andres J, Bertin PN (2016) The microbial genomics of arsenic. FEMS Microbiol Rev 40:299–322

    Article  CAS  PubMed  Google Scholar 

  • Asher CJ, Keay PF (1979) Arsenic uptake by barley seedlings. Aust J Plant Physiol 6:459–466

    Article  CAS  Google Scholar 

  • Awasthi S, Chauhan R, Srivastava S et al (2017) The journey of arsenic from soil to grain in rice. Front Plant Sci 8:1007. https://doi.org/10.3389/fpls.2017.01007

    Article  PubMed  PubMed Central  Google Scholar 

  • Batista BL, Nigar M, Mestrot A et al (2014) Identification and quantification of phytochelatins in roots of rice to long-term exposure: evidence of individual role on arsenic accumulation and translocation. J Exp Bot 65:1467–1479

    Article  CAS  PubMed  Google Scholar 

  • Besserer A, Burnotte E, Bienert GP et al (2012) Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121. Plant Cell 24:3463–3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • BIAM (2002) 4th international conference on arsenic contamination of groundwater in Bangladesh: cause, effect and remedy

    Google Scholar 

  • Bienert MD, Bienert GP (2017) Plant aquaporins and metalloids. In: Chaumont F, Tyerman SD (eds) Plant aquaporins from transport to signaling. Springer, Cham, pp 297–333

    Chapter  Google Scholar 

  • Bienert GP, Moller ALB, Kristiansen KA et al (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Bienert GP, Thorsen M, Schüssler MD et al (2008a) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 10:26. https://doi.org/10.1186/1741-7007-6-26

    Article  CAS  Google Scholar 

  • Bienert GP, Schüssler MD, Jahn TP (2008b) Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends Biochem Sci 33:20–26

    Article  CAS  PubMed  Google Scholar 

  • Bleeker PM, Schat H, Vooijs R et al (2003) Mechanisms of arsenate tolerance in Cytisus striatus. New Phytol 157:33–38

    Article  CAS  PubMed  Google Scholar 

  • Blute NK, Brabander DJ, Hemond HF et al (2004) Arsenic sequestration by ferric iron plaque on cattail roots. Environ Sci Technol 38:6074–6077

    Article  CAS  PubMed  Google Scholar 

  • Borgnia M, Nielsen S, Engel A et al (1999) Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem 68:425–458

    Article  CAS  PubMed  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  CAS  PubMed  Google Scholar 

  • Burló F, Guijarro I, Carbonell-Barrachina AA et al (1999) Arsenic species: effects on and accumulation by tomato plants. J Agric Food Chem 47:1247–1253

    Article  PubMed  Google Scholar 

  • Cao Y, Sun D, Ai H et al (2017) Knocking out OsPT4 gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains. Environ Sci Technol 51:12131–12138

    Article  CAS  PubMed  Google Scholar 

  • Carey AM, Scheckel KG, Lombi E et al (2010) Grain unloading of arsenic species in rice. Plant Physiol 152:309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carey AM, Norton GJ, Deacon C et al (2011) Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytol 192:87–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castrillo G, Sanchez-Bermejo E, de Lorenzo L et al (2013) WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. Plant Cell 25:2944–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catarecha P, Segura MD, Franco-Zorrilla JM et al (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarty N (ed) (2015) Arsenic toxicity: prevention and treatment. CRC Press, London

    Google Scholar 

  • Chaumont F, Tyerman SD (2014) Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol 164:1600–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaumont F, Barrieu F, Wojcik E et al (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Zhu Y-G, Liu W-J et al (2005) Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytol 165:91–97

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Liu Y, Ni J et al (2011) OsPHF1 regulates the plasma membrane localization of low and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice. Plant Physiol 157:269–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Sun S-K, Tang Z et al (2017a) The nodulin 26-like intrinsic membrane protein OsNIP3;2 is involved in arsenite uptake by lateral roots in rice. J Exp Bot 68:3007–3016

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Hua CY, Jia MR et al (2017b) Heterologous expression of Pteris vittata arsenite antiporter PvACR3;1 reduces arsenic accumulation in plant shoots. Environ Sci Technol 51:10387–10395

    Article  CAS  PubMed  Google Scholar 

  • Clark GT, Dunlop J, Phung HT (2003) Phosphate absorption by Arabidopsis thaliana: interactions between phosphorus status and inhibition by arsenate. Aust J Plant Physiol 27:959–965

    Google Scholar 

  • Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330

    Article  CAS  PubMed  Google Scholar 

  • Colmer TD, Cos MCH, Voesenek LACJ (2006) Root aeration in rice (Oryza sativa): evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytol 170:767–777

    Article  CAS  PubMed  Google Scholar 

  • Cottingham KL, Karimi R, Gruber JF et al (2013) Diet and toenail arsenic concentrations in a New Hampshire population with arsenic-containing water. Nutr J 12:149. https://doi.org/10.1186/1475-2891-12-149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Groot BL, Grubmüller H (2001) Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294:2353–2357

    Article  PubMed  Google Scholar 

  • Di Tusa SF, Fontenot EB, Wallace RW et al (2016) A member of the phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern Pteris vittata is a high-affinity arsenate transporter. New Phytol 209:762–772

    Article  CAS  Google Scholar 

  • Dordas C, Chrispeels MJ, Brown PH (2000) Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol 124:1349–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan G-L, Hu Y, Liu W-J et al (2011) Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grain. Environ Exp Bot 71:416–421

    CAS  Google Scholar 

  • Duan G-L, Hu Y, Schneider S et al (2016) Inositol transporters atint2 and atint4 regulate arsenic accumulation in Arabidopsis seeds. Nat Plants 2:15202. https://doi.org/10.1038/nplants.2015.202

    Article  CAS  PubMed  Google Scholar 

  • Dunlop J, Phung H, Meeking R et al (1997) The kinetics associated with phosphate absorption by Arabidopsis and its regulation by phosphorus status. Aust J Plant Physiol 24:623–629

    Article  CAS  Google Scholar 

  • Dwivedi S, Tripathi RD, Srivastava S et al (2010) Arsenic affects mineral nutrients in grains of various Indian rice (Oryza sativa L.) genotypes grown on arsenic-contaminated soils of West Bengal. Protoplasma 245:113–124

    Article  CAS  PubMed  Google Scholar 

  • Ellis BD, MacDonald CLB (2004) Stabilized arsenic(I) iodide: a ready source of arsenic iodide fragments and a useful reagent for the generation of clusters. Inorg Chem 43:5981–5986

    Article  CAS  PubMed  Google Scholar 

  • Esteban E, Carpena RO, Meharg AA (2003) High affinity phosphate/arsenate transport in white lupin (Lupinus albus) is relatively insensitive to phosphate status. New Phytol 158:165–173

    Article  CAS  Google Scholar 

  • Fang X, Yang B, Matthay MA et al (2002) Evidence against aquaporin-1-dependent CO2 permeability in lung and kidney. J Physiol 542:63–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fendorf S, Kocar BD (2009) Biogeochemical processes controlling the fate and transport of arsenic: implications for south and southeast Asia. Adv Agron 104:137–164

    Article  CAS  Google Scholar 

  • Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182. https://doi.org/10.3389/fphys.2012.00182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forrest KL, Bhave M (2007) Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype. Funct Integr Genomics 7:263–289

    Article  CAS  PubMed  Google Scholar 

  • Frick A, JärvÃ¥ M, Ekvall M et al (2013a) Mercury increases water permeability of a plant aquaporin through a non-cysteine-related mechanism. Biochem J 454:491–499

    Article  CAS  PubMed  Google Scholar 

  • Frick A, JärvÃ¥ M, Törnroth-Horsefield S (2013b) Structural basis for pH gating of plant aquaporins. FEBS Lett 587:989–993

    Article  CAS  PubMed  Google Scholar 

  • Frohne T, Rinklebe J, Diaz-Bone RA et al (2011) Controlled variation of redox conditions in a floodplain soil: impact on metal mobilization and biomethylation of arsenic and antimony. Geoderma 160:414–424

    Article  CAS  Google Scholar 

  • Fu D, Libson A, Miercke LJ et al (2000) Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290:481–486

    Article  CAS  PubMed  Google Scholar 

  • Gerbeau P, Güclü J, Ripoche P et al (1999) Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. Plant J 18:577–587

    Article  CAS  PubMed  Google Scholar 

  • González E, Solano R, Rubio V et al (2005) Phosphate transporter traffic facilitator1 is a plant specific SEC12- related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17:3500–3512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanaoka H, Uraguchi S, Takano J et al (2014) OsNIP3;1, a rice boric acid channel, regulates boron distribution and is essential for growth under boron-deficient conditions. Plant J 78:890–902

    Article  CAS  PubMed  Google Scholar 

  • Hansel CM, La Force MJ, Fendorf S et al (2002) Spatial and temporal association of As and Fe species on aquatic plant roots. Environ Sci Technol 36:1988–1994

    Article  CAS  PubMed  Google Scholar 

  • Hayes JE, Pallotta M, Baumann U et al (2013) Germanium as a tool to dissect boron toxicity effects in barley and wheat. Funct Plant Biol 40:618–627

    Article  CAS  PubMed  Google Scholar 

  • He Z, Yan H, Chen Y et al (2015) An aquaporin PvTIP4;1 from Pteris vittata may mediate arsenite uptake. New Phytol 209:746–761

    Article  PubMed  CAS  Google Scholar 

  • Hu M, Li F, Liu C et al (2015) The diversity and abundance of As(III)-oxidizers on root iron plaque is critical for arsenic bioavailability to rice. Sci Rep 5:13611. https://doi.org/10.1038/srep13611

    Article  PubMed  PubMed Central  Google Scholar 

  • Ilan B, Tajkhorshid E, Schulten K et al (2004) The mechanism of proton exclusion in aquaporin channels. Proteins 55:223–228

    Article  CAS  PubMed  Google Scholar 

  • Indriolo E, Na G, Ellis D et al (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isayenkov SV, Maathuis FJM (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett 582:1625–1628

    Article  CAS  PubMed  Google Scholar 

  • Jahn TP, Møller AL, Zeuthen T et al (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett 574:31–36

    Article  CAS  PubMed  Google Scholar 

  • Janiak C, Meyer HJ, Gudat D et al (2012) Moderne anorganische chemie. De Gruyter, Berlin

    Book  Google Scholar 

  • Jauh GY, Phillips TE, Rogers JC (1999) Tonoplast intrinsic protein isoforms as markers for vacuolar functions. Plant Cell 11:1867–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322

    Article  CAS  PubMed  Google Scholar 

  • Jia HF, Ren HY, Gu M et al (2011) The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Plant Physiol 156:1164–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johanson U, Gustavsson S (2002) A new subfamily of major intrinsic proteins in plants. Mol Biol Evol 19:456–461

    Article  CAS  PubMed  Google Scholar 

  • Jung JS, Preston GM, Smith BL et al (1994) Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J Biol Chem 269:14648–14654

    CAS  PubMed  Google Scholar 

  • Kaldenhoff R, Bertl A, Otto B et al (2007) Characterization of plant aquaporins. Methods Enzymol 428:505–531

    Article  PubMed  CAS  Google Scholar 

  • Kamiya T, Tanaka M, Mitani N et al (2009) NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J Biol Chem 284:2114–2120

    Article  CAS  PubMed  Google Scholar 

  • Kamiya T, Islam MR, Duan GL et al (2013) Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice. Soil Sci Plant Nutr 59:580–590

    Article  CAS  Google Scholar 

  • Kammerloher W, Fischer U, Piechottka GP et al (1994) Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system. Plant J 6:187–199

    Article  CAS  PubMed  Google Scholar 

  • Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10:22–29

    Article  CAS  PubMed  Google Scholar 

  • Katsuhara M, Sasano S, Horie T et al (2014) Functional and molecular characteristics of rice and barley NIP aquaporins transporting water, hydrogen peroxide and arsenite. Plant Biotechnol 31:213–219

    Article  CAS  Google Scholar 

  • Khalid S, Shahid M, Niazi NK et al (2017) Arsenic behaviour in soil-plant system: biogeochemical reactions and chemical speciation influences. In: Anjum N, Gill S, Tuteja N (eds) Enhancing cleanup of environmental pollutants. Springer, Berlin, pp 97–140

    Chapter  Google Scholar 

  • Kirscht A, Kaptan SS, Bienert KP et al (2016) Crystal structure of an ammonia-permeable aquaporin. PLoS Biol 14:e1002411. https://doi.org/10.1371/journal.pbio.1002411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kläning UK, Bielski BHJ, Sehested K (1989) Arsenic(IV). A pulse-radiolysis study. Inorg Chem 28:2717–2724

    Article  Google Scholar 

  • Kopittke PM, de Jonge MD, Wang P et al (2014) Laterally resolved speciation of arsenic in roots of wheat and rice using fluorescence-XANES imaging. New Phytol 201:1251–1262

    Article  CAS  PubMed  Google Scholar 

  • Kosinska-Eriksson U, Fischer G, Friemann R et al (2013) Subangstrom resolution X-ray structure details aquaporin-water interactions. Science 340:1346–1349

    Article  CAS  Google Scholar 

  • Kreida S, Tornroth-Horsefield S (2015) Structural insights into aquaporin selectivity and regulation. Curr Opin Struct Biol 33:126–134

    Article  CAS  PubMed  Google Scholar 

  • Kuramata M, Abe T, Kawasaki A et al (2013) Genetic diversity of arsenic accumulation in rice and QTL analysis of methylated arsenic in rice grains. Rice (NY) 116:3. https://doi.org/10.1186/1939-8433-6-3

    Article  Google Scholar 

  • Larsen EH, Moscholm L, Nielsen MM (1992) Atmospheric deposition of trace elements around point sources and human health risk assessment: II. Uptake of arsenic and chromium by vegetables grown near a wood preservation factory. Sci Total Environ 126:263–275

    Article  CAS  PubMed  Google Scholar 

  • Li XJ, Cournoyer JJ, Lin C et al (2008) Use of O-18 labels to monitor deamidation during protein and peptide sample processing. J Am Soc Mass Spectrom 19:855–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Wu Z, Ma N et al (2009a) Regulation of the rose Rh-PIP2;1 promoter by hormones and abiotic stresses in Arabidopsis. Plant Cell Rep 28:185–196

    Article  PubMed  CAS  Google Scholar 

  • Li RY, Ago Y, Liu WJ et al (2009b) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li RY, Stroud JL, Ma JF et al (2009c) Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol 43:3778–3783

    Article  CAS  PubMed  Google Scholar 

  • Li N, Wang J, Song W-Y (2016) Arsenic uptake and translocation in plants. Plant Cell Physiol 571:4–13

    Article  CAS  Google Scholar 

  • Liu LH, Ludewig U, Gassert B et al (2003) Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol 133:1220–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu WJ, Zhu YG, Smith FA et al (2004a) Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture. New Phytol 162:481–488

    Article  CAS  Google Scholar 

  • Liu Z, Carbrey JM, Agre P et al (2004b) Arsenic trioxide uptake by human and rat aquaglyceroporins. Biochem Biophs Res Commun 316:1178–1185

    Article  CAS  Google Scholar 

  • Loqué D, Ludewig U, Yuan L et al (2005) Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol 137:671–680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luxton TP, Tadanier CJ, Eick MJ (2006) Mobilization of arsenite by competitive interaction with silicic acid. Soil Sci Soc Am J 70:204–214

    Article  CAS  Google Scholar 

  • Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, Amsterdam

    Google Scholar 

  • Ma JF, Yamaji N (2015) A cooperative system of silicon transport in plants. Trends Plant Sci 20:435–442

    Article  CAS  PubMed  Google Scholar 

  • Ma LQ, Komar KM, Tu C et al (2001) A fern that hyperaccumulates arsenic – a hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 409:579. https://doi.org/10.1038/35054664

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Tamai K, Yamaji N et al (2006) A silicon transporter in rice. Nature 440:688–691

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N et al (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N et al (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci U S A 105:9931–9935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maciaszczyk-Dziubinska E, Migocka M, Wysocki R (2011) Acr3p is a plasma membrane antiporter that catalyzes As(III)/H(+) and Sb(III)/H(+) exchange in Saccharomyces cerevisiae. Biochim Biophys Acta 1808:1855–1859

    Article  CAS  PubMed  Google Scholar 

  • Macnair MR, Cumbes Q (1987) Evidence that arsenic tolerance in Holcus lanatus L. is caused by an altered phosphate uptake system. New Phytol 107:387–394

    Article  CAS  PubMed  Google Scholar 

  • Maeshima M (2001) Tonoplast transporters: organization and function. Annu Rev Plant Physiol Plant Mol Biol 52:469–497

    Article  CAS  PubMed  Google Scholar 

  • Mansour NM, Sawhney M, Tamang DG et al (2007) The bile-arsenite-riboflavin transporter (BART) superfamily. FEBS J 274:612–629

    Article  CAS  PubMed  Google Scholar 

  • Marin AR, Masscheleyn PH, Patrick WH (1992) The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant Soil 139:175–183

    Article  CAS  Google Scholar 

  • Maurel C, Boursiac Y, Luu DT et al (2015) Aquaporins in plants. Physiol Rev 95:1321–1358

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA, Jardine L (2003) Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol 157:39–44

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA, Macnair MR (1990) An altered phosphate uptake system in arsenate tolerant Holcus lanatus. New Phytol 116:29–35

    Article  CAS  Google Scholar 

  • Meharg AA, Macnair MR (1992) Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43:519–524

    Article  CAS  Google Scholar 

  • Meharg AA, Zhao F-J (eds) (2012) Arsenic and rice. Springer, Dordrecht

    Google Scholar 

  • Mendoza-Cózatl DG, Jobe TO, Hauser F et al (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mestrot A, Feldmann J, Krupp EM et al (2011) Field fluxes and speciation of arsines emanating from soils. Environ Sci Technol 45:1798–1804

    Article  CAS  PubMed  Google Scholar 

  • Miller AJ, Shen Q, Xu G (2009) Freeways in the plant: transporters for N, P and S and their regulation. Curr Opin Plant Biol 12:284–290

    Article  CAS  PubMed  Google Scholar 

  • Misson J, Thibaud MC, Bechtold N et al (2004) Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Mol Biol 55:727–741

    Article  CAS  PubMed  Google Scholar 

  • Mitani-Ueno N, Yamaji N, Zhao FJ et al (2011) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62:4391–4398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosa KA, Kumar K, Chhikara S et al (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res 21:1265–1277

    Article  CAS  PubMed  Google Scholar 

  • Muchhal US, Pardo JM, Raghothama KG (1996) Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Natl Acad Sci U S A 93:10519–10523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mudge SR, Rae AL, Diatloff E et al (2002) Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J 31:341–353

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan VK, Jain A, Poling MD et al (2011) Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs, and influences the interaction between phosphate homeostasis and ethylene signaling. Plant Physiol 156:1149–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niemietz CM, Tyerman SD (2002) New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. FEBS Lett 531:443–447

    Article  CAS  PubMed  Google Scholar 

  • Norman NC (1998) Chemistry of arsenic, antimony and bismuth. Springer, Berlin

    Google Scholar 

  • Noronha H, Agasse A, Martins AP et al (2014) The grape aquaporin VvSIP1 transports water across the ER membrane. J Exp Bot 65:981–993

    Article  CAS  PubMed  Google Scholar 

  • Nussaume L, Kanno S, Javot H et al (2011) Phosphate import in plants: focus on the PHT1 transporters. Front Plant Sci 2:83. https://doi.org/10.3389/fpls.2011.00083

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmieri L, Picault N, Arrigoni R et al (2008) Molecular identification of three Arabidopsis thaliana mitochondrial dicarboxylate carrier isoforms: organ distribution, bacterial expression, reconstitution into liposomes and functional characterization. Biochem J 410:621–629

    Article  CAS  PubMed  Google Scholar 

  • Porquet A, Filella M (2007) Structural evidence of the similarity of Sb(OH)3 and As(OH)3 with glycerol: implications for their uptake. Chem Res Toxicol 20:1269–1276

    Article  CAS  PubMed  Google Scholar 

  • Preston GM, Carroll TP, Guggino WB et al (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

    Article  CAS  PubMed  Google Scholar 

  • Punshon T, Jackson BP, Meharg AA et al (2017) Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Sci Total Environ 581:209–220

    Article  PubMed  CAS  Google Scholar 

  • Raab A, Williams PN, Meharg A et al (2007a) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4:197–203

    Article  CAS  Google Scholar 

  • Raab A, Wright SH, Jaspars M et al (2007b) Pentavalent arsenic can bind to biomolecules. Angew Chem Int Ed Engl 46:2594–2597

    Article  CAS  PubMed  Google Scholar 

  • Rafiq M, Shahid M, Abbas G et al (2017a) Comparative effect of calcium and EDTA on arsenic uptake and physiological attributes of Pisum sativum. Int J Phytoremediation 19:662–669

    Article  CAS  PubMed  Google Scholar 

  • Rafiq M, Shahid M, Shamshad S et al (2017b) A comparative study to evaluate efficiency of EDTA and calcium in alleviating arsenic toxicity to germinating and young Vicia faba L. seedlings. J Soils Sediments. https://doi.org/10.1007/s11368-017-1693-5

    Article  CAS  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693

    Article  CAS  PubMed  Google Scholar 

  • Ramahaleo T, Alexandre J, Lassalles JP (1996) Stretch activated channels in plant cells. A new model for osmoelastic coupling. Plant Physiol Biochem 34:327–334

    Google Scholar 

  • Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 216:23–37

    Article  CAS  PubMed  Google Scholar 

  • Remy E, Cabrito TR, Batista RA et al (2012) The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol 195:356–371

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P et al (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Saier MH, Eng BH, Fard S et al (1999) Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim Biophys Acta 1422:1–56

    Article  CAS  PubMed  Google Scholar 

  • Saier MH, Reddy VS, Tsu BV et al (2016) The transporter classification database (TCDB). Nucleic Acids Res 44:D372–D379. https://doi.org/10.1093/nar/gkv1103

    Article  CAS  PubMed  Google Scholar 

  • Sakurai G, Satake A, Yamaji N et al (2015) In silico simulation modeling reveals the importance of the Casparian strip for efficient silicon uptake in rice roots. Plant Cell Physiol 56:631–639

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Kobayashi Y (1998) The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite. J Bacteriol 180:1655–1661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Savage DF, Egea PF, Robles-Colmenares Y et al (2003) Architecture and selectivity in aquaporins: 2.5Ã… X-ray structure of aquaporin Z. PLoS Biol 1:E72. https://doi.org/10.1371/journal.pbio.0000072

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnurbusch T, Hayes J, Hrmova M et al (2010) Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol 153:1706–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seyfferth AL (2015) Abiotic effects of dissolved oxyanions on iron plaque quantity and mineral composition in a simulated rhizosphere. Plant Soil 397:43–61

    Article  CAS  Google Scholar 

  • Seyfferth AL, Webb SM, Andrews JC et al (2010) Arsenic localization, speciation, and co-occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings. Environ Sci Technol 44:8108–8113

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Xiong T, Castrec-Rouelle M et al (2013) Water extraction kinetics of metals, arsenic and dissolved organic carbon from industrial contaminated poplar leaves. J Environ Sci 25:2451–2459

    Article  CAS  Google Scholar 

  • Shin H, Shin HS, Dewbre GR et al (2004) Phosphate transport in Arabidopsis: Pht1;1and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Dickson S, Smith FA (2001) Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated? Aust J Plant Physiol 28:685–696

    Google Scholar 

  • Song WY, Park J, Mendoza-Cózatl DG et al (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci U S A 107:21187–21192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song WY, Yamaki T, Yamaji N et al (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci U S A 111:15699–15704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto G, Alleva K, Mazzella MA et al (2008) AtTIP1;3 and AtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea. FEBS Lett 582:4077–4082

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P et al (2013) Quantitative real-time expression profiling of aquaporin-isoforms and growth response of Brassica juncea under arsenite stress. Mol Biol Rep 40:2879–2886

    Article  CAS  PubMed  Google Scholar 

  • Stolz JF, Basu P, Santini JM et al (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    Article  CAS  PubMed  Google Scholar 

  • Su YH, McGrath SP, Zhu YG et al (2008) Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata. New Phytol 180:434–441

    Article  CAS  PubMed  Google Scholar 

  • Su YH, McGrath SP, Zhao FJ (2010) Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant Soil 328:27–34

    Article  CAS  Google Scholar 

  • Sui H, Han BG, Lee JK et al (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878

    Article  CAS  PubMed  Google Scholar 

  • Sun SB, Gu M, Cao Y et al (2012) A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice. Plant Physiol 159:1571–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajkhorshid E, Nollert P, Jensen MO et al (2002) Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296:525–530

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Wada M, Ludewig U et al (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Wallace IS, Takano J et al (2008) NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 20:2860–2875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Z, Chen Y, Chen F et al (2017) OsPTR7 (OsNPF8.1), a putative peptide transporter in rice, is involved in dimethylarsenate accumulation in rice grain. Plant Cell Physiol 58:904–913

    Article  CAS  PubMed  Google Scholar 

  • Tiwari M, Sharma D, Dwivedi S et al (2014) Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Plant Cell Environ 37:140–152

    Article  CAS  PubMed  Google Scholar 

  • Törnroth-Horsefield S, Wang Y, Hedfalk K et al (2006) Structural mechanism of plant aquaporin gating. Nature 439:688–694

    Article  PubMed  CAS  Google Scholar 

  • Tu C, Ma LQ (2003) Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environ Exp Bot 50:243–251

    Article  CAS  Google Scholar 

  • Uehlein N, Lovisolo C, Siefritz F et al (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737

    Article  CAS  PubMed  Google Scholar 

  • Ullrich-Eberius CI, Sanz A, Novacky AJ (1989) Evaluation of arsenate-and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba-G1. J Exp Bot 40:119–128

    Article  CAS  Google Scholar 

  • Verdoucq L, Grondin A, Maurel C (2008) Structure-function analysis of plant aquaporin AtPIP2;1 gating by divalent cations and protons. Biochem J 415:409–416

    Article  CAS  PubMed  Google Scholar 

  • Versaw WK, Harrison MJ (2002) A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell 14:1751–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace IS, Choi WG, Roberts DM (2006) The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochim Biophys Acta 1758:1165–1175

    Article  CAS  PubMed  Google Scholar 

  • Wan XM, Lei M, Chen TB et al (2015) Role of transpiration in arsenic accumulation of hyperaccumulator Pteris vittata L. Environ Sci Pollut Res 22:16631–16639

    Article  CAS  Google Scholar 

  • Wang JR, Zhao FJ, Meharg AA et al (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Ribot C, Rezzonico E et al (2004) Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis. Plant Physiol 135:400–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Xu Q, Kong YH et al (2014) Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation. Plant Physiol 164:2020–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver DC, Shomer NH, Louis CF et al (1994) Nodulin 26, a nodule-specific symbiosome membrane protein from soybean, is an ion channel. J Biol Chem 269:17858–17862

    CAS  PubMed  Google Scholar 

  • Wu ZC, Ren HY, McGrath SP et al (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wudick MM, Li X, Valentini V et al (2015) Subcellular redistribution of root aquaporins induced by hydrogen peroxide. Mol Plant 8:1103–1114

    Article  CAS  PubMed  Google Scholar 

  • Wysocki R, Bobrowicz P, UÅ‚aszewski S (1997) The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J Biol Chem 272:30061–30066

    Article  CAS  PubMed  Google Scholar 

  • Xiao K-Q, Li L-G, Ma L-P et al (2016) Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents. Environ Pollut 211:1–8

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Dai W, Yan H, Li S, Shen H et al (2015) Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant 8:722–733

    Article  CAS  PubMed  Google Scholar 

  • Yamaji N, Ma JF (2009) A transporter at the node responsible for intervascular transfer of silicon in rice. Plant Cell 21:2878–2883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Gao MX, Hu H et al (2016) OsCLT1, a CRT-like transporter 1, is required for glutathione homeostasis and arsenic tolerance in rice. New Phytol 211:658–670

    Article  CAS  PubMed  Google Scholar 

  • Ye RG, Verkman AS (1989) Simultaneous optical measurement of osmotic and diffusional water permeability in cells and liposomes. Biochemistry 28:824–829

    Article  CAS  PubMed  Google Scholar 

  • Ye WL, Wood BA, Stroud JL et al (2010) Arsenic speciation in phloem and xylem exudates of castor bean. Plant Physiol 154:1505–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yool AJ, Stamer WD, Regan JW (1996) Forskolin stimulation of water and cation permeability in aquaporin 1 water channels. Science 273:1216–1218

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Peng YH, Zhang MH et al (2006) Water relations and an expression analysis of plasma membrane intrinsic proteins in sensitive and tolerant rice during chilling and recovery. Cell Res 16:599–608

    Article  PubMed  CAS  Google Scholar 

  • Zeidel ML, Ambudkar SV, Smith BL et al (1992) Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 31:7436–7440

    Article  CAS  PubMed  Google Scholar 

  • Zeuthen T, Alsterfjord M, Beitz E et al (2013) Osmotic water transport in aquaporins: evidence for a stochastic mechanism. J Physiol 591:5017–5029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhao CY, Liu J et al (2016) Influence of sulfur on transcription of genes involved in arsenic accumulation in rice grains. Plant Mol Biol Report 34:556–565

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA et al (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Mc Grath SP, Meharg AA (2010a) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Ago Y, Mitani N et al (2010b) The role of the rice aquaporin Lsi1 in arsenite efflux from roots. New Phytol 186:392–399

    Article  CAS  PubMed  Google Scholar 

  • Zhao XQ, Mitani N, Yamaji N et al (2010c) Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. Plant Physiol 153:1871–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao FJ, Stroud JL, Khan MA et al (2012) Arsenic translocation in rice investigated using radioactive 73As tracer. Plant Soil 350:413–420

    Article  CAS  Google Scholar 

  • Zhu YG, Geng CN, Tong YP et al (2006) Phosphate (Pi) and arsenate uptake by two wheat (Triticum aestivum) cultivars and their doubled haploid lines. Ann Bot 98:631–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YG, Sun GX, Lei M et al (2008) High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. Environ Sci Technol 42:5008–5013

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Latowski, D., Kowalczyk, A., Nawieśniak, K., Listwan, S. (2018). Arsenic Uptake and Transportation in Plants. In: Hasanuzzaman, M., Nahar, K., Fujita, M. (eds) Mechanisms of Arsenic Toxicity and Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-1292-2_1

Download citation

Publish with us

Policies and ethics