Skip to main content

Cryopreservation of Plant Genetic Resources

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1081))

Abstract

Cryopreservation encompasses several interconnect disciplines including physiology and cryophysics. This chapter reviews the current techniques for cryopreservation of plant genetic resources (PGRs). Vitrification is an effective ice crystal avoidance mechanism for hydrated cells and tissues. With any cryopreservation method, whole or partial parts of specimens which are sufficiently dehydrated can be vitrified by rapid cooling in liquid nitrogen (LN). Techniques discussed are the vitrification protocol, encapsulation-vitrification protocol, droplet vitrification protocol (DV), vitrification protocol using cryo-plates (V cryo-plate), and air dehydration protocol using cryo-plates (D cryo-plate). In these DV, V, and D cryo-plate protocols, specimens to be cryopreserved are immersed directly into LN on aluminum foil strips or cryo-plates; removal from LN to rewarming solution results in a high level of plant regrowth with ultrarapid cooling and warming. The protocols were applied to a wide array of plant species including wild and multi-ploid species, although fine tuning of the protocols was required for successful application to specific plant species and lines. These three protocols efficiently complement each other and appear highly promising to facilitate large-scale cryobanking of PGRs in genebanks. Cryo-scanning electron microscopy makes it possible to examine the cellular and water behavior in plant tissues when immersed in LN. It has been verified that tissues cryopreserved by the process of vitrification and the cryo-plate protocols are cryopreservation methods for reliable long-term preservation of PGRs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Cryo-plate:

Aluminum cryo-plate

Cryo-SEM:

Cryo-scanning electron micro-scopy

D cryo-plate:

Air dehydration protocol using cryo-plates

DV:

Droplet vitrification protocol

EV:

Encapsulation-vitrification pro-tocol

LN:

Liquid nitrogen

LS:

Loading solution

MS medium:

Murashige and Skoog medium

PGRs:

Plant genetic resources

PVS2:

Plant vitrification solution 2

V cryo-plate:

Vitrification protocol using cryo-plates

References

  • Burke MJ (1986) The glassy state and survival of anhydrous biological systems. In: Leopold AC (ed) Membrane, metabolism and dry organisms. Cornell University Press, Ithaca, pp 358–364

    Google Scholar 

  • Dhungana SA, Kunitake H, Niino T, Yamamoto S, Fukui K, Tanaka D, Maki S, Matsumoto T (2017) Cryopreservation of blueberry shoot tips derived from in vitro and current shoots after cryopreservation using D cryo-plate technique. Plant Biotechnol 34:1–5

    Article  Google Scholar 

  • Engelmann F (2014) Cryopreservation of clonal crops: a review of key parameters. Acta Hortic 1039:31–40

    Article  Google Scholar 

  • Engelmann F, Gonzalez-Arnao MT, Wu YJ, Escobar R (2008) Development of encapsulation dehydration. In: Reed B (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 59–76

    Chapter  Google Scholar 

  • Engelmann-Sylvestre I, Engelmann F (2015) Cryopreservation of in vitro-grown shoot tips of Chenopodium odorum using aluminium cryo-plates. In Vitro Cell Dev Biol Plant 51:185–191

    Article  CAS  Google Scholar 

  • Fahy GM, MacFarlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21:407–426

    Article  CAS  Google Scholar 

  • Fujikawa S, Suzuki T, Ishikawa T, Sakurai S, Hasegawa J (1988) Continuous observation of frozen biological materials with cryo-scanning electron microscope and freeze-replica by a new cryo-system. J Electron Microsc 37:33–37

    Google Scholar 

  • Hirai D, Sakai A (2001) Recovery growth of plants cryopreservation by encapsulation-vitrification. Bull Hokkaido Pref Agric Exp Sta 80:55–64

    Google Scholar 

  • Kim HH, Lee YK, Kim T, Cho EG, Lee JK, Ji JJ, Nam SS, Engelmann F (2007) Implementation of cryopreservation for garlic genetic resources by the droplet vitrification procedure. Acta Hortic 760:209–215

    CAS  Google Scholar 

  • Kim HH, Popova E, No NY, Baek HJ, Kim CK, Cho EG, Engelmann F (2011) Application of alternative loading solutions to garlic and chrysanthemum in droplet-vitrification procedures. Acta Hortic 908:173–180

    Article  CAS  Google Scholar 

  • Luyet BJ (1937) The vitrification of organic colloids and protoplasm. Biodinamica 29:1–15

    Google Scholar 

  • Maki S, Hirai Y, Niino T, Matsumoto T (2015) Assessment of molecular genetic stability between long-term cryopreserved and tissue cultured wasabi (Wasabia japonica) plants. CryoLetters 36:318–324

    CAS  PubMed  Google Scholar 

  • Matsumoto T, Sakai A, Takahashi C, Yamada K (1995) Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by encapsulation-vitrification method. CryoLetters 16:189–196

    Google Scholar 

  • Matsumoto T, Sakai A, Takahashi C, Yamada K (1996) Cryopreservation of in vitro-grown apical meristems of lily (Lilium L.) by encapsulation-vitrification method. Plant Biotechnol 13:29–34

    Google Scholar 

  • Matsumoto T, Akihiro T, Maki S, Mochida K, Kitagawa M, Tanaka D, Yamamoto S, Niino T (2013) Genetic stability assessment of Wasabi plants regenerated from long-term cryopreserved shoot tips using morphological, biochemical and molecular analysis. CryoLetters 34:128–136

    CAS  PubMed  Google Scholar 

  • Matsumoto T, Yoshimatsu K, Kawahara N, Yamamoto S, Niino T (2014) Development of in vitro propagation by node culture and cryopreservation by V Cryo-plate method for Perilla frutescens. Adv Hortic Sci 28:79–83

    Google Scholar 

  • Matsumoto T, Yamamoto S, Fukui K, Rafique K, Engelmann F, Niino T (2015) Cryopreservation of persimmon shoot tips from dormant buds using the D cryo-plate technique. Hortic J 84:106–110

    Article  CAS  Google Scholar 

  • Niino T (2000) Cryopreservation of deciduous fruits and mulberry trees. In: Razdan MK, Cocking EC (eds) Conservation of plant resources in vitro, vol. 2: application and limitations. Science Publishers, Enfield, pp 193–221

    Google Scholar 

  • Niino T, Valle-Arizaga M (2015) Cryopreservation for preservation of potato genetic resources. Breed Sci 65:41–52

    Article  CAS  Google Scholar 

  • Niino T, Yamamoto S (2017) Base procedures of V and D cryo-plate methods. In: Niino T, Matsumoto T, Yamamoto S, Maki S, Tanaka D, Engelmann F (eds) Manual of cryo-preservation methods using cryo-plate. Plant Tissue Culture and Cryopreservation Group, Tsukuba, pp 16–26

    Google Scholar 

  • Niino T, Yamamoto S, Fukui K, Castillo Martínez CR, Valle Arizaga M, Matsumoto T, Engelmann F (2013) Dehydration improves cryopreservation of mat rush (Juncus decipiens Nakai) basal stem buds on cryo-plate. CryoLetters 34:54–560

    Google Scholar 

  • Niino T, Wunna, Watanabe K, Nohara N, Rafique T, Yamamoto S, Fukui K, Valle Arizaga M, Castillo Martinez CR, Matsumoto T, Engelmann F (2014) Cryopreservation of mat rush lateral buds by air dehydration using aluminium cryo-plate. Plant Biotechnol 31:281–287

    Article  CAS  Google Scholar 

  • Panis B (2008) Cryopreservation of monocots. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 241–280

    Chapter  Google Scholar 

  • Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168:45–55

    Article  CAS  Google Scholar 

  • Rafique T, Yamamoto S, Fukui K, Mahmood Z, Niino T (2015) Cryopreservation of sugarcane using the V cryo-plate technique. CryoLetters 36:51–59

    PubMed  Google Scholar 

  • Rafique T, Yamamoto S, Fukui K, Tanaka D, Valle Arizaga M, Abbas M, Matsumoto T, Niino T (2016) Cryopreservation of shoot tips from different sugarcane varieties using D cryo-plate technique. Pak J Agric Sci 53:151–158

    Google Scholar 

  • Reed BM (2008) Plant cryopreservation: a practical guide. Springer, New York, p 513

    Book  Google Scholar 

  • Reed BM, Kovalchuk I, Kushnarenko S, Meier-Dinkel A, Schoenweiss K, Pluta S, Straczynska K, Benson EE (2004) Evaluation of critical points in technology transfer of cryopreservation protocols to international plant conservation laboratories. CryoLetters 25:341–352

    PubMed  Google Scholar 

  • Sakai A (1956) Survival of plant tissue at super-low temperatures. Low temperature science. Ser B Biol Sci 14:17–24

    Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33

    Article  CAS  Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1991) Survival by vitrification of nucellar cells of navel orange (Citrus sinensis var. brasiliensis Tanaka) cooled to −196°C. J Plant Physiol 137:465–470

    Article  Google Scholar 

  • Sakai A, Hirai D, Niino T (2008) Development of PVS-based vitrification and encapsulation-vitrification protocols. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 33–58

    Chapter  Google Scholar 

  • Salma M, Fki L, Engelmann-Sylvestre I, Niino T, Engelmann F (2014) Comparison of droplet-vitrification and D-cryoplate for cryopreservation of date palm (Phoenix dactylifera L.) polyembryonic masses. Sci Hortic 179:91–97

    Article  CAS  Google Scholar 

  • Sekizawa K, Yamamoto S, Rafique T, Fukui K, Niino T (2011) Cryopreservation of in vitro grown shoot tips of carnation (Dianthus caryophyllus L.) by vitrification method using aluminium cryo-plates. Plant Biotechnol 28:401–405

    Article  Google Scholar 

  • da Silva Cordeiro L, Simões-Gurgel C, Albarello N, Engelmann F (2015) Cryopreservation of in vitro-grown shoot tips of Cleome rosea (Cleomaceae) by V cryo-plate technique. In Vitro Cell Dev Biol Plant 51:688–695

    Article  Google Scholar 

  • Tanaka D, Niino T, Isuzugawa K, Hikage T, Uemura M (2004) Cryopreservation of shoot apices of in vitro grown gentian plants by vitrification and encapsulation-vitrification protocols. CryoLetters 25:167–176

    PubMed  Google Scholar 

  • Tanaka D, Nishiuchi A, Niino T, Matsumoto T (2011) A comparison of vitrification and droplet vitrification procedures for the cryopreservation of in vitro grown black chokeberry shoot tips. Acta Hortic 908:325–330

    Article  CAS  Google Scholar 

  • Tanaka D, Akimoto-Kato A, Kusaba M, Taniguchi K, Niino T, Maki S, Matsumoto T (2016a) Cryopreservation of chrysanthemum shoot tips by D cryo-plate method. J Jpn Soc Agric Technol Mgt 23:1–7

    Google Scholar 

  • Tanaka D, Ishizaki K, Kohchi T, Yamato KT (2016b) Cryopreservation of gemmae from the liverwort Marchantia polymorpha L. Plant Cell Physiol 57:307–324

    Article  Google Scholar 

  • Valle Arizaga M, Villalobos Navarro OF, Castillo Martinez CR, Cruz Gutiérrez EJ, López Delgado HA, Yamamoto S, Watanabe K, Niino T (2017) Improvement to the D cryo-plate protocol applied to practical cryopreservation of in vitro grown potato shoot tips. Hortic J 87:222–228

    Article  Google Scholar 

  • Vujović T, Chatelet P, Ružić Đ, Engelmann F (2015) Cryopreservation of Prunus spp. using aluminium cryo-plates. Sci Hortic 195:173–182

    Article  Google Scholar 

  • Yamamoto S, Rafique T, Priyantha WS, Fukui K, Matsumoto T, Niino T (2011) Development of a cryopreservation procedure using aluminium cryo-plates. CryoLetters 32:256–265

    CAS  PubMed  Google Scholar 

  • Yamamoto S, Fukui K, Rafique T, Khan NI, Castillo Martinez CR, Sekizawa K, Matsumoto T, Niino T (2012a) Cryopreservation of in vitro-grown shoot tips of strawberry by the vitrification method using aluminium cryo-plates. Plant Genet Res Charact Utiliz 10:14–19

    Article  CAS  Google Scholar 

  • Yamamoto S, Rafique T, Fukui K, Sekizawa K, Koyama A, Ichihashi T, Niino T (2012b) Development of an effective cryopreservation protocol using aluminium cryo-plates for in vitro- grown shoot tips of mulberries (Morus spp.) originated from the tropics and subtropics. Sanshi-Konchu Biotechnol 81:57–62

    Google Scholar 

  • Yamamoto S, Rafique T, Fukui K, Sekizawa K, Niino T (2012c) V-cryo-plate procedure as an effective protocol for cryobanks: case study of mint cryopreservation. CryoLetters 33:12–23

    CAS  PubMed  Google Scholar 

  • Yamamoto S, Wunna, Rafique T, Valle Arizaga M, Fukui K, Cruz Gutierrez E, Castillo Martinez C, Watanabe K, Niino T (2015) The aluminium cryo-plate increases efficiency of cryopreservation protocols for potato shoot tips. Am J Potato Res 92:250–257

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tanaka, D., Niino, T., Uemura, M. (2018). Cryopreservation of Plant Genetic Resources. In: Iwaya-Inoue, M., Sakurai, M., Uemura, M. (eds) Survival Strategies in Extreme Cold and Desiccation. Advances in Experimental Medicine and Biology, vol 1081. Springer, Singapore. https://doi.org/10.1007/978-981-13-1244-1_19

Download citation

Publish with us

Policies and ethics