Skip to main content

Applications of Antifreeze Proteins: Practical Use of the Quality Products from Japanese Fishes

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1081))

Abstract

Numerous embryonic ice crystals are generated in water at the moment of freezing. These crystals grow and merge together to form an ice block that can be generally observed. Antifreeze protein (AFP) is capable of binding to the embryonic ice crystals, inhibiting such an ice block formation. Fish-derived AFP additionally binds to membrane lipid bilayers to prolong the lifetime of cells. These unique abilities of AFP have been studied extensively for the development of advanced techniques, such as ice recrystallization inhibitors, freeze-tolerant gels, cell preservation fluids, and high-porosity ceramics, for which mass-preparation method of the quality product of AFP utilizing fish muscle homogenates made a significant contribution. In this chapter, we present both fundamental and advanced information of fish AFPs that have been especially discovered from mid-latitude sea area, which will provide a hint to develop more advanced techniques applicable in both medical and industrial fields.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AFGP:

Antifreeze glycoprotein

AFP:

Antifreeze protein

CTLD:

C-type lectin-like domain

EC:

Euro-Collins

FBS:

Fetal bovine serum

FIPA:

Fluorescence-based ice plane affinity

IRI:

Ice recrystallization inhibition

PBS:

Phosphate-buffered saline

References

  • Amir G, Horowitz L, Rubinsky B, Yousif BS, Lavee J, Smolinsky AK (2004) Subzero nonfreezing cryopreservation of rat hearts using antifreeze protein I and antifreeze protein III. Cryobiology 48:273–282

    Article  CAS  PubMed  Google Scholar 

  • Anklam MR, Firoozabadi A (2005) An interfacial energy mechanism for the complete inhibition of crystal growth by inhibitor adsorption. J Chem Phys 123:144708–1 –112

    Article  PubMed  Google Scholar 

  • Antson AA, Smith DJ, Roper DI, Lewis S, Caves LSD, Verma CS, Buckley SL, Lillford PJ, Hubbard RE (2001) Understanding the mechanism of ice binding by type III antifreeze proteins. J Mol Biol 305:875–889

    Article  CAS  PubMed  Google Scholar 

  • Baguisi A, Arav A, Crosby TF, Roche JF, Boland MP (1997) Hypothermic storage of sheep embryos with antifreeze proteins development in vitro and in vivo. Theriogeneology 48:1017–1024

    Article  CAS  Google Scholar 

  • Bar-Dolev M, Celik Y, Wettlaufer JS, Davies PL, Braslavsky I (2012) New insights into ice growth and melting modifications by antifreeze proteins. J R Soc Interface 9:3249–3259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu K, Garnham CP, Nishimiya Y, Tsuda S, Braslavsky I, Davies PL (2014) Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity. J Vis Exp 83:e51185

    Google Scholar 

  • Beirão J, Zilli L, Vilella S, Cabrita E, Schiavone R, Herráez MP (2012) Improving sperm cryopreservation with antifreeze proteins: effect on gilthead seabream (Sparus aurata) plasma membrane lipids. Biol Reprod 86:59

    Article  PubMed  Google Scholar 

  • Burcham TS, Osuga DT, Rao BNN, Bush CA, Feeney RE (1986a) Purification and primary sequences of the major arginine-containing antifreeze glycopeptides from the fish Eleginus gracilis. J Biol Chem 261:6384–6389

    CAS  PubMed  Google Scholar 

  • Burcham TS, Osuga DT, Yeh Y, Feeney RE (1986b) A kinetic description of antifreeze glycoprotein activity. J Biol Chem 261:6390–6397

    CAS  PubMed  Google Scholar 

  • Carpenter JF, Hansen TN (1992) Antifreeze protein modulates cell survival during cryopreservation: mediation through influence on ice crystal growth. Proc Natl Acad Sci U S A 89:8953–8957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao H, Davies PL, Carpenter JF (1996) Effects of antifreeze proteins on red blood cell survival during cryopreservation. J Exp Biol 199:2071–2076

    CAS  PubMed  Google Scholar 

  • Cheng C-HC, DeVries AL (1989) Structures of antifreeze peptides from the Antarctic eel pout, Austrolycicthys brachycephalus. Biochim Biophys Acta 997:55–64

    Article  CAS  PubMed  Google Scholar 

  • Davies PL (2014) Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth. Trends Biochem Sci 39:548–555

    Article  CAS  PubMed  Google Scholar 

  • Delgado AE, Sun D-W (2001) Heat and mass transfer models for predicting freezing processes – a review. J Food Eng 47:157–174

    Article  Google Scholar 

  • Deluca CI, Chao H, Sönnichsen FD, Sykes BD, Davies PL (1996) Effect of type III antifreeze protein dilution and mutation on the growth inhibition of ice. Biophys J 71:2346–2355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeVries AL, Wohlschlag DE (1969) Freezing resistance in some Antarctic fishes. Science 163:1073–1075

    Article  CAS  PubMed  Google Scholar 

  • Duman JG, DeVries AL (1976) Isolation, characterization, and physical properties of protein antifreezes from the winter flounder, Pseudopleuronectes americanus. Comp Biochem Physiol 54B:375–380

    Google Scholar 

  • Ewart KV, Fletcher GL (1990) Isolation and characterization of antifreeze proteins from smelt (Osmerus mordax) and Atlantic herring (Clupea harengus harengus). Can J Zool 68:1652–1658

    Article  CAS  Google Scholar 

  • Fletcher G, Hew CL, Davies PL (2001) Antifreeze proteins of teleost fishes. Annu Rev Physiol 63:359–390

    Article  CAS  PubMed  Google Scholar 

  • Fukushima M, Tsuda S, Yoshizawa Y (2013) Fabrication of highly porous alumina prepared by gelation freezing route with antifreeze protein. J Am Cram Soc 96:1029–1031

    Article  CAS  Google Scholar 

  • Garnham CP, Natarajan A, Middleton AJ, Kuiper MJ, Braslavsky I, Davies PL (2010) Compound ice-binding site of an antifreeze protein revealed by mutagenesis and fluorescent tagging. Biochemistry 49:9063–9071

    Article  CAS  PubMed  Google Scholar 

  • Garnham CP, Nishimiya Y, Tsuda S, Davies PL (2012) Engineering a naturally inactive isoform of type III antifreeze protein into one that can stop the growth of ice. FEBS Lett 586:3876–3881

    Article  CAS  PubMed  Google Scholar 

  • Gibson MI (2010) Slowing the growth of ice with synthetic macromolecules: beyond antifreeze (glyco) proteins. Polym Chem 1:1141–1152

    Article  CAS  Google Scholar 

  • Gronwald W, Loewen MC, Lix B, Daugulis AJ, Sönnichsen FD, Davies PL, Sykes BD (1998) The solution structure of type II antifreeze protein reveals a new member of the lectin family. Biochemistry 37:4712–4721

    Article  CAS  PubMed  Google Scholar 

  • Harding MM, Ward LG, Haymet ADJ (1999) Type I ‘antifreeze’ proteins: structure-activity studies and mechanisms of ice growth inhibition. Eur J Biochem 264:653–665

    Article  CAS  PubMed  Google Scholar 

  • Harding MM, Anderberg PI, Haymet ADJ (2003) Antifreeze’ glycoproteins from polar fish. Eur J Biochem 270:1381–1392

    Article  CAS  PubMed  Google Scholar 

  • Hays LM, Feeney RE, Crowe LM, Crowe JH, Oliver AE (1996) Antifreeze glycoproteins inhibit leakage from liposomes during thermotropic phase transitions. Proc Natl Acad Sci U S A 93:6835–3840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hew CL, Yang DSC (1992) Protein interaction with ice. Eur J Biochem 203:33–42

    Article  CAS  PubMed  Google Scholar 

  • Hew CL, Wang N-C, Joshi S, Fletcher GL, Scott GK, Hayes PH, Buettner B, Davies PL (1988) Multiple genes provide the basis for antifreeze protein diversity and dosage in the ocean pout, Macrozoarces americanus. J Biol Chem 263:12049–12056

    CAS  PubMed  Google Scholar 

  • Hirano Y, Nishimiya Y, Matsumoto S, Matsushita M, Todo S, Miura A, Komatsu Y, Tsuda S (2008) Hypothermic preservation effect on mammalian cells of type III antifreeze proteins from notched-fin eelpout. Cryobiology 57:46–51

    Article  CAS  PubMed  Google Scholar 

  • Hobbs PV (1974) Ice physics. Oxford University Press, London, pp 461–523

    Google Scholar 

  • Ideta A, Aoyagi Y, Tsuchiya K, Nakamura Y, Hayama K, Shirasawa A, Sakaguchi K, Tominaga N, Nishimiya Y, Tsuda S (2015) Prolonging hypothermic storage (4°C) of bovine embryos with fish antifreeze protein. J Reprod Dev 61:1–6

    Article  CAS  PubMed  Google Scholar 

  • Jackman J, Noestheden M, Moffat D, Pezacki JP, Findlay S, Ben RN (2007) Assessing antifreeze activity of AFGP8 using domain recognition software. Biochem Biophys Res Commun 354:340–344

    Article  CAS  PubMed  Google Scholar 

  • Jo JW, Jee BC, Lee JR, Suh CS (2011) Effect of antifreeze protein supplementation in vitrification medium on mouse oocyte developmental competence. Fertil Steril 96:1239–1245

    Article  CAS  PubMed  Google Scholar 

  • Jo JW, Jee BC, Suh CS, Kim SH (2012) The beneficial effects of antifreeze proteins in the vitrification of immature mouse oocytes. PLoS One 7:e37043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahlweit M (1975) Ostwald ripening of precipitates. Adv Colloid Interf Sci 5:1–35

    Article  CAS  Google Scholar 

  • Kamijima T, Sakashita M, Miura A, Nishimiya Y, Tsuda S (2013) Antifreeze protein prolongs the life-time of insulinoma cells during hypothermic preservation. PLoS One 8:e73643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karanova MV, Pronina ND, Tsvetkova LI (2002) The effect of antifreeze glycoproteins on survival of fish spermatozoa under the conditions of long-term storage at 4°C. Izv Akad Nauk Se Biol 1:88–92

    Google Scholar 

  • Kiga K, Kurita K, Nishimura M, Higashi K, Nakagawa T, Kishi M, Nishimiya Y, Tsuda S, Hosoi Y, Anzai M (2011) Short term storage of Mouse epididymal spermatozoa by antifreeze protein addition at cold temperature. Mem Ins Adv Technol, Kinki Univ 16:51–58

    CAS  Google Scholar 

  • Kim MK, Kong HS, Youm HW, Jee BC (2017) Effects of supplementation with antifreeze proteins on the follicular integrity of vitrified-warmed mouse ovaries: comparison of two types of antifreeze proteins alone and in combination. Clin Exp Reprod Med 44:8–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Knight CA, DeVries AL, Oolman LD (1984) Fish antifreeze protein and the freezing and recrystallization of ice. Nature 308:295–296

    Article  CAS  PubMed  Google Scholar 

  • Knight CA, Hallett J, DeVries AL (1988) Solute effects on ice recrystallization: an assessment technique. Cryobiology 25:55–60

    Article  CAS  PubMed  Google Scholar 

  • Knight CA, Cheng CC, DeVries AL (1993) Adsorption of α-helical peptides on specific ice crystal surface planes. Biophys J 59:409–418

    Google Scholar 

  • Koh HY, Lee JH, Han SJ, Park H, Lee SG (2015) Effect of the antifreeze protein from the arctic yeast Leucosporidium sp. AY30 on cryopreservation of the marine diatom Phaeodactylum tricornutum. Appl Biochem Biotechnol 175:677–686

    Article  CAS  PubMed  Google Scholar 

  • Kondo H, Hanada Y, Sugimoto H, Hoshino T, Garnham CP, Davies PL, Tsuda S (2012) Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation. Proc Natl Acad Sci U S A 109:9360–9365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumeta H, Ogura K, Nishimiya Y, Miura A, Inagaki F, Tsuda S (2013) NMR structure note: a defective isoform and its activity-improved variant of a type III antifreeze protein from Zoarces elongatus Kner. J Biomol NMR 55:225–230

    Article  CAS  PubMed  Google Scholar 

  • Lee CY, Rubinsky B, Fletcher GL (1992) Hypothermic preservation of whole mammalian organs with “antifreeze” proteins. Cryo-Lett 13:59–66

    CAS  Google Scholar 

  • Lee SG, Koh HY, Lee JH, Kang SH, Kim HJ (2012) Cryopreservation effects of the recombinant ice-binding protein from the arctic yeast Leucosporidium sp. on red blood cells. Appl Biochem Biotechnol 167:824–834

    Article  CAS  PubMed  Google Scholar 

  • Lee JR, Youm HW, Lee HJ, Jee BC, Suh CS, Kim SH (2015) Effect of antifreeze protein on mouse ovarian tissue cryopreservation and transplantation. Yonsei Med J 56:778–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X-M, Trinh K-Y, Hew CL, Buettner B, Baenziger J, Davies PL (1985) Structure of an antifreeze polypeptide and its precursor from the ocean pout, Macrozoarces americanus. J Biol Chem 260:12904–12909

    CAS  PubMed  Google Scholar 

  • Liang S, Yuan B, Kwon J-W, Ahn M, Cui X-S, Bang JK, Kim N-H (2016) Theriogenology 86:485–494

    Article  CAS  PubMed  Google Scholar 

  • Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35–50

    Article  Google Scholar 

  • Liu Y, Li Z, Lin Q, Kosinski J, Seetharaman J, Bujnicki JM, Sivaraman J, Hew C-L (2007) Structure and evolutionary origin of Ca2+-dependent herring type II antifreeze protein. PLoS One 6:e548

    Article  Google Scholar 

  • Mahatabuddin S, Nishimiya Y, Miura A, Kondo H, Tsuda S (2016) Critical ice shaping concentration (CISC): a new parameter to evaluate the activity of antifreeze proteins. Cryobiol Cryotechnol 62:95–103

    Google Scholar 

  • Mahatabuddin S, Hanada Y, Nishimiya Y, Miura A, Kondo H, Davies PL, Tsuda S (2017) Concentration-dependent oligomerization of an alpha-helical antifreeze polypeptide makes it hyperactive. Sci Rep 7:42501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto S, Matsusita M, Morita T, Kamachi H, Tsukiyama S, Furukawa Y, Koshida S, Tachibana Y, Nishimura S, Todo S (2006) Effects of synthetic antifreeze glycoprotein analogue on islet cell survival and function during cryopreservation. Cryobiology 52:90–98

    Article  CAS  PubMed  Google Scholar 

  • Nishijima K, Tanaka M, Sakai Y, Koshimoto C, Morimoto M, Watanabe T, Fan J, Kitajima S (2014) Effects of type III antifreeze protein on sperm and embryo cryopreservation in rabbit. Cryobiology 69:22–25

    Article  CAS  PubMed  Google Scholar 

  • Nishimiya Y, Sato R, Takamichi M, Miura A, Tsuda S (2005) Co-operative effect of the isoforms of type III antifreeze protein expressed in Notched-fin eelpout, Zoarces elongatus Kner. FEBS J 272:482–292

    Article  CAS  PubMed  Google Scholar 

  • Nishimiya Y, Mie Y, Hirano Y, Kondo H, Miura A, Tsuda S (2008a) Mass preparation and technological development of an antifreeze protein: toward the practical use of biomolecules. Synthesiology 1:7–14

    Article  CAS  Google Scholar 

  • Nishimiya Y, Kondo H, Takamichi M, Sugimoto H, Suzuki M, Miura A, Tsuda S (2008b) Crystal structure and mutational analysis of Ca2+-independent type II antifreeze protein from Longsnout poacher, Brachyopsis rostratus. J Mol Biol 382:734–746

    Article  CAS  PubMed  Google Scholar 

  • Olijve LLC, Meister K, DeVries AL, Duman JG, Guo S, Bakker HJ, Voets IK (2016a) Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins. Proc Natl Acad Sci U S A 113:3740–3745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olijve LLC, Oude VAS, Voets IK (2016b) A simple and quantitative method to evaluate ice recrystallization kinetics using the Circle Hough Transform algorithm. Cryst Growth Des 16:4190–4195

    Article  CAS  Google Scholar 

  • Prathalingam NS, Holt WV, Revell SG, Mirczuk S, Fleck RA, Watson PF (2006) Impact of antifreeze proteins and antifreeze glycoproteins on bovine sperm during freeze-thaw. Theriogenology 66:1894–1900

    Article  CAS  PubMed  Google Scholar 

  • Qadeer S, Khan MA, Ansari MS, Rakha BA, Ejaz R, Husna AU, Ashiq M, Iqbal N, Akhter S (2014) Evaluation of antifreeze protein III for cryopreservation of Nili-Ravi (Bubalus bubalis) buffalo bull sperm. Anim Reprod Sci 148:26–31

    Article  CAS  PubMed  Google Scholar 

  • Qadeer S, Khan MA, Ansari MS, Rakha BA, Ejaz R, Iqbal R, Younis M, Ullah M, DeVries AL, Akhter S (2015) Efficiency of antifreeze glycoproteins for cryopreservation of Nili-Ravi (Bubalus bubalis) buffalo bull sperm. Anim Reprod Sci 157:56–62

    Article  CAS  PubMed  Google Scholar 

  • Robinson NJ, Picken A, Coopman K (2014) Low temperature cell pausing: an alternative short-term preservation method for use in cell therapies including stem cell applications. Biotechnol Lett 36:201–209

    Article  CAS  PubMed  Google Scholar 

  • Robles V, Barobosa V, Herráez MP, Martínez-Páramo S, Cancela ML (2007) The antifreeze protein type I (AFP I) increases seabream (Sparus aurata) embryos tolerance to low temperatures. Theriogenology 68:284–289

    Article  CAS  PubMed  Google Scholar 

  • Rubinsky B (2003) Principles of low temperature cell preservation. Heart Fail Rev 8:277–284

    Article  CAS  PubMed  Google Scholar 

  • Rubinsky B, Arav A, Marrioli A, DeVries AL (1990) The effect of antifreeze glycopeptides on membrane potential changes at hypothermic temperatures. Biochem Biophys Res Commun 173:1369–1374

    Article  CAS  PubMed  Google Scholar 

  • Rubinsky B, Arav A, Fletcher GL (1991) Hypothermic protection – a fundamental property of “antifreeze” proteins. Biochem Biophys Res Commun 180:566–571

    Article  CAS  PubMed  Google Scholar 

  • Rubinsky B, Arav A, DeVries AL (1992) The cryoprotective effect of antifreeze glycoproteins from Antarctic fishes. Cryobiology 29:69–79

    Article  CAS  PubMed  Google Scholar 

  • Rubinsky B, Arav A, Hong JS, Lee CY (1994) Freezing of mammalian livers with glycerol and antifreeze proteins. Biochem Biophys Res Commun 29:732–741

    Article  Google Scholar 

  • Rubinsky L, Raichman N, Lavee J, Frenk H, Ben-Jacob E, Bickler PE (2010) Antifreeze protein suppresses spontaneous neural activity and protects neurons from hypothermia/re-warming injury. Neurosci Res 67:256–259

    Article  CAS  PubMed  Google Scholar 

  • Sazaki G, Zepeda S, Nakatsubo S, Yokoyama E, Furukawa Y (2010) Elementary steps at the surface of ice crystals visualized by advanced optical microscopy. Proc Natl Acad Sci U S A 107:19702–19707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott GK, Davies PL, Shears MA, Fletcher GL (1987) Structural variations in the alanine-rich antifreeze proteins of the pleuronectinae. Eur J Biochem 168:629–633

    Article  CAS  PubMed  Google Scholar 

  • Scotter AJ, Marshall CB, Graham LA, Gilbert JA, Garnham CP, Davies PL (2006) The basis for hyperactivity of antifreeze proteins. Cryobiology 53:229–239

    Article  CAS  PubMed  Google Scholar 

  • Sicheri F, Yang DSC (1995) Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 375:427–431

    Article  CAS  PubMed  Google Scholar 

  • Slaughter D, Fletcher GL, Ananthanarayanan VS, Hew CL (1981) Antifreeze proteins from the sea raven, Hemitripterus americanus. J Biol Chem 256:2022–2026

    CAS  PubMed  Google Scholar 

  • Smallwood M, Worrall D, Byass L, Elias L, Ashford D, Doucet CJ, Holt C, Telford J, Lillford P, Bowles DJ (1999) Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota). Biochem J 340:385–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sönnichsen FD, Sykes BD, Chao H, Davies PL (1993) The nonhelical structure of antifreeze protein type III. Science 259:1154–1157

    Article  PubMed  Google Scholar 

  • Sørensen TF, Ramløv H (2002) Maternal-fetal relations in antifreeze production in the eelpout Zoarces viviparus. Cryo Lett 23:183–190

    Google Scholar 

  • Steffen R, Krom RAF, Ferguson D, Ludwig J (1990) Comparison of University of Wisconsin (UW) and Euro-Collins (EC) preservation solutions in a rat liver transplant model. Transplant Int 3:133–136

    Article  CAS  Google Scholar 

  • Tablin F, Oliver AE, Walker NJ, Crowe LM, Crowe JH (1996) Membrane phase transition of intact human platelets: correlation with cold-induced activation. J Cell Phys 168:305–313

    Article  CAS  Google Scholar 

  • Tachibana Y, Fletcher GL, Fujitani N, Tsuda S, Monde K, Nishimura S-I (2004) Antifreeze glycoproteins: elucidation of the structural motifs that are essential for antifreeze activity. Angnew Chem Int Ed 43:856–862

    Article  CAS  Google Scholar 

  • Takamichi M, Nishimiya Y, Miura A, Tsuda S (2007) Effect of annealing time of an ice crystal on the activity of type III antifreeze protein. FEBS J 274:6469–6476

    Article  CAS  PubMed  Google Scholar 

  • Takamichi M, Nishimiya Y, Miura A, Tsuda S (2009) Fully active QAE isoform confers thermal hysteresis activity on a defective SP isoform of type III antifreeze protein. FEBS J 276:1471–1479

    Article  CAS  PubMed  Google Scholar 

  • Tomalty HE, Hamilton EF, Hamilton A, Kukai O, Allen T, Walker VK (2017) Kidney preservation at subzero temperatures using a novel storage solution and insect ice-binding proteins. Cryo Lett 38:100–107

    CAS  Google Scholar 

  • Tomczak MM, Hincha DK, Estrada SD, Wolkers WF, Crowe LM, Feeney RE, Tablin F, Crowe JH (2002) A mechanism for stabilization of membranes at low temperatures by an antifreeze protein. Biophys J 82:874–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomczak MM, Marshall CB, Gilbert JA, Davies PL (2003) A facile method for determining ice recrystallization inhibition by antifreeze proteins. Biochm Biophys Res Commun 311:1041–1046

    Article  CAS  Google Scholar 

  • Tsuda S, Miura A (2002) Antifreeze proteins originating in fishes. US patent application No. 10,104

    Google Scholar 

  • Wang L, Duman JG (2005) Antifreeze proteins of the beetle Dendroides Canadensis enhance one another’s activities. Biochemistry 44:10305–10312

    Article  CAS  PubMed  Google Scholar 

  • Yamashita Y, Miura R, Takemoto Y, Tsuda S, Kawahara H, Obata H (2003) Type II antifreeze protein from a mid-latitude freshwater fish, Japanese smelt (Hypomesus nipponensis). Biosci Biotechnol Biochem 67:461–466

    Article  CAS  PubMed  Google Scholar 

  • Yarely M, Ramos L (2010a) Freezing equipment and operations. In: Guerrero-Legarreta I (ed) Handbook of poultry science and technology, vol 1. Wiley, Hoboken, pp 350–368

    Google Scholar 

  • Yarely M, Ramos L (2010b) Biology of cell survival in the cold: the basis for biopreservation of tissues and organs. In: Baust JG, Baust JM (eds) Advances in biopreservation. Taylor & Francis, London, pp 15–62

    Google Scholar 

  • Yeh Y, Feeney RH (1996) Antifreeze proteins: structures and mechanisms of function. Chem Rev 96:601–618

    Article  CAS  PubMed  Google Scholar 

  • Yu SO, Brown A, Middleton AJ, Tomczak MM, Walker VK, Davies PL (2010) Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis. Cryobiology 61:327–334

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Laursen RA (1999) Artificial antifreeze polypeptides: alpha-helical peptides with KAAK motifs have antifreeze and ice crystal morphology modifying properties. FEBS Lett 455:372–376

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number JP15K13760. The mass-preparation method of fish AFPs has been developed with the help of Takeshi Koizumi, Toshifumi Inoue, and Hirotaka Ishii from Nichirei Corporation, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakae Tsuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahatabuddin, S., Tsuda, S. (2018). Applications of Antifreeze Proteins: Practical Use of the Quality Products from Japanese Fishes. In: Iwaya-Inoue, M., Sakurai, M., Uemura, M. (eds) Survival Strategies in Extreme Cold and Desiccation. Advances in Experimental Medicine and Biology, vol 1081. Springer, Singapore. https://doi.org/10.1007/978-981-13-1244-1_17

Download citation

Publish with us

Policies and ethics