Skip to main content

Does Mycoremediation Reduce the Soil Toxicant?

  • Chapter
  • First Online:
Book cover Phytobiont and Ecosystem Restitution

Abstract

The soil polluted with heavy metals (HMs) is a matter of concern in current scenario. In agriculture, contaminants have negative effects on both crop quality and their yields. Mycoremediation is a new technology for the reduction of petroleum hydrocarbons and HMs through fungal strains. The efficient fungal strains play a significant role in the decomposition of contaminants and keep environment clean. They are good decomposers which degrade the cellulose and lignin of plants. It also helps in breaking down various toxic substances and helps to sustain soil health. Fungi like mushroom, Trichoderma spp., help to concentrate and absorb HMs which act as hyperaccumulator. Mushrooms are fungi which secrete certain enzymes or biocatalysts and are able to biodegrade a varied variety of agro-industrial wastes into products and transform industrial waste and environmentally persistent pollutants. In addition, the potential fungal species are also known to improve and boost plant yield, development, and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams P, De-Leij FAAM, Lynch JM (2007) Trichoderma harzianum Rifai 1295–22 mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil. Microb Ecol 54:306–313

    Article  CAS  Google Scholar 

  • Ahamed A, Vermette P (2009) Effect of culture medium composition on Trichoderma reesei’s morphology and cellulase production. Bioresour Technol 100:5979–5987

    Article  CAS  Google Scholar 

  • Akinyele JB, Fakoya S, Adetuyi CF (2012) Anti-growth factors associated with Pleurotus ostreatus in a submerged liquid fermentation. Malays J Microbiol 8:135–140

    Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation. Academic, New York

    Google Scholar 

  • Arriagada C, Aranda E, Sampedro I, Garcia-Romera I, Ocampo JA (2009) Contribution of the saprobic fungi Trametes versicolor and Trichoderma harzianum and the arbuscular mycorrhizal fungi Glomus deserticola and G. claroideum to arsenic tolerance of Eucalyptus globules. Bioresour Technol 100:6250–6257

    Article  CAS  Google Scholar 

  • Badawy MI, Ghaly MY, Gad-Allah TA (2006) Advanced oxidation processes for the removal of organo phosphorus pesticides from wastewater. Desalination 194:166–175

    Article  CAS  Google Scholar 

  • Barry DP, Austa SD (1994) Pollutant degradation by white rot fungi. Rev Environ Contam Toxicol 138:49–72

    Google Scholar 

  • Cao L, Jiang M, Zeng Z, Du A, Tan H, Liu Y (2008) Trichoderma atroviride F6 improves phytoextraction efficiency of mustard [Brassica juncea (L.) Coss. var. foliosa Bailey] in Cd, Ni contaminated soils. Chemosphere 71:1769–1773

    Article  CAS  Google Scholar 

  • Contreras-Cornejo HA, Macias-Rodriguez L, Cortes-Penagos C, Lopez-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    Article  CAS  Google Scholar 

  • Errasquin EL, Vazquez C (2003) Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 50:137–143

    Article  Google Scholar 

  • Eskander SB, Abd El-Aziz SM, El-Sayaad H, Saleh HM (2012) Cementation of bioproducts generated from biodegradation of radioactive cellulosic-based waste simulates by mushroom. ISRN Chem Eng 2012:329676

    Article  Google Scholar 

  • Ezzi MI, Lynch JM (2005) Biodegradation of cyanide by Trichoderma spp. and Fusarium spp. Enzym Microb Technol 36:849–854

    Article  CAS  Google Scholar 

  • Gestel KV, Mergaert J, Swingsb J, Coosemansa J, Ryckeboera J (2003) Bioremediation of diesel oil-contaminated soil by composting with biowaste. Environ Pollut 125:361–368

    Article  Google Scholar 

  • Hajieghrari B (2010) Effect of some metal-containing compounds and fertilizers on mycoparasite Trichoderma species mycelia growth response. Afr J Biotechnol 9:4025–4033

    CAS  Google Scholar 

  • Hammel KE, Green B, Gai WZ (1991) Ring fission of anthracene by a eukaryote. Proc Natl Acad Sci USA 88:10605–10608

    Article  CAS  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004a) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  Google Scholar 

  • Harman GE, Lorito M, Lynch JM (2004b) Uses of Trichoderma spp. to remediate soil and water pollution. Adv Appl Microbiol 56:313–330

    Article  CAS  Google Scholar 

  • Hatvani L, Manczinger L, Kredics L, Szekeres A, Antal Z, Vagvolgyi C (2006) Production of Trichoderma strains with pesticide poly-resistance by mutagenesis and protoplast fusion. Antonie Van Leeuwenhoek 89:387–393

    Article  Google Scholar 

  • Heinfling MJ, Martínez AT, Martínez M, Bergbauer Szewzyk U (1998) Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microbiol 64:2788–2793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jang KY, Cho SM, Seok SJ, Kong WS, Kim GH, Sung JM (2009) Screening of biodegradable function of indigenous ligno-degrading mushroom using dyes. Mycobiology 37:53–61

    Article  CAS  Google Scholar 

  • Jibran AK, Milsee Mol JP (2011) Pleurotus sajor-caju Protein: a potential biosorptive agent. Adv Bio Tech 11:25–27

    Google Scholar 

  • Johannes C, Majcherczyk A, Hüttermann A (1996) Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds. Appl Microbiol Biotechnol 46:313–317

    Article  CAS  Google Scholar 

  • Johnston MW (2010) Mushrooms offer bioremediation options. Biocycle 51(9):35–37

    Google Scholar 

  • Kapoor A, Viraraghavan T (1995) Fungal biosorption-an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour Technol 53(3):195–206

    CAS  Google Scholar 

  • Katayama A, Matsumura F (1993) Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environ Toxicol Chem 12:1059–1065

    Article  CAS  Google Scholar 

  • Kredics L, Antal L, Manczinger L, Nagy E (2001) Breeding of mycoparasitic Trichoderma strains for heavy metal resistance. Lett Appl Microbiol 33:112–116

    Article  CAS  Google Scholar 

  • Kulshreshtha S, Mathur N, Bhatnagar P (2013a) Mycoremediation of paper, pulp and cardboard industrial wastes and pollutants. In: Goltapeh EM, Danesh YR, Varma A (eds) Fungi as bioremediators: soil biology. Springer, Berlin, pp 77–116

    Chapter  Google Scholar 

  • Kulshreshtha S, Mathur N, Bhatnagar P, Kulshreshtha S (2013b) Cultivation of Pleurotus citrinopileatus on handmade paper and cardboard industrial wastes. Ind Crop Prod 41:340–346

    Article  Google Scholar 

  • Kulshreshtha S, Mathur N, Bhatnagar P (2014) Mushroom as a product and their role in mycoremediation. AMB Express 4(1):29

    Article  Google Scholar 

  • Kumhomkul T, Panich-pat T (2013) Lead accumulation in the straw mushroom, Volvariella volvacea, from lead contaminated rice straw and stubble. Bull Environ Contam Toxicol 91:231–234

    Article  CAS  Google Scholar 

  • Lamrood PY, Ralegankar SD (2013) Biosorption of Cu, Zn, Fe, Cd, Pb and Ni by non-treated biomass of some edible mushrooms. Asian J Exp Biol Sci 4:190–195

    Google Scholar 

  • Lin JE, Wang HY, Hickey RF (1990) Degradation kinetics of pentachloro-phenol by Phanerochaete chrysosporium. Biotechnol Bioeng 35:1125–1134

    Article  CAS  Google Scholar 

  • Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from ‘Omics to the field. Annu Rev Phytopathol 48:395–417

    Article  CAS  Google Scholar 

  • Luo D, Yf X, Tan ZL, Li XD (2013) Removal of Cu2+ ions from aqueous solution by the abandoned mushroom compost of Flammulina velutipes. J Environ Biol 34:359–365

    CAS  PubMed  Google Scholar 

  • Mai C, Schormann W, Majcherczyk A, Hüttermann A (2004) Degradation of acrylic copolymers by white-rot fungi. Appl Microbiol Biotechnol 65(4):479–487

    Article  CAS  Google Scholar 

  • Mastouri F, Bjorkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100:1213–1221

    Article  Google Scholar 

  • Mejstrik V, Lepsova A (1992) Applicability of Fungi to the monitoring of environmental pollution by heavy metals. In: Market B (ed) Plants as biomonitors. VCH, Weinheim, pp 365–377

    Google Scholar 

  • Mishra A, Nautiyal CS (2009) Functional diversity of the microbial community in the rhizosphere of chickpea grown in diesel fuel spiked soil amended with Trichoderma reesei using sole-carbon source utilization profiles. World J Microbiol Biotechnol 25:1175–1180

    Article  CAS  Google Scholar 

  • Monteiro VN, Ulhoa CJ (2006) Biochemical characterization of a b-1,3-glucanase from Trichoderma koningii induced by cell wall of Rhizoctonia solani. Curr Microbiol 52:92–96

    Article  CAS  Google Scholar 

  • Mukherjee I, Gopal M (1996) Degradation of chlorpyrifos by two soil fungi Aspergillus niger and Trichoderma viride. Toxicol Environ Chem 57:145–151

    Article  CAS  Google Scholar 

  • Nagy B, Măicăneanu A, Indolean C, Mânzatu C, Silaghi-Dumitrescu MC (2014) Comparative study of Cd(II) biosorption on cultivated Agaricus bisporus and wild Lactarius piperatus based biocomposites. Linear and nonlinear equilibrium modelling and kinetics. J Taiwan Inst Chem Eng 45(3):921–929

    Article  CAS  Google Scholar 

  • Nyanhongo GS, Gübitz G, Sukyai P, Leitner C, Haltrich D, Ludwig R (2007) Oxidoreductases from Trametes spp. in biotechnology: a wealth of catalytic activity. Food Technol Biotechnol 45:250–268

    CAS  Google Scholar 

  • Ollikka P, Alhonmäki K, Leppänen VM, Glumoff T, Raijola T, Suominen I (1993) Decolorization of azo, triphenylmethane, heterocyclic, and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Appl Environ Microbiol 59:4010–4016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oros G, Naar Z, Cserhati T (2011) Growth response of Trichoderma species to organic solvents. Mol Inform 30:276–285

    Article  CAS  Google Scholar 

  • Oyetayo VO, Adebayo AO, Ibileye A (2012) Assessment of the biosorption potential of heavy metals by Pleurotus tuber-regium. Int J Adv Biol Res 2:293–297

    Google Scholar 

  • Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci 103(27):10186–10191

    Article  CAS  Google Scholar 

  • Pashin YV, Bakhitova LM (1979) Mutagenic and carcinogenic properties of polycyclic aromatic hydrocarbons. Environ Health Perspect 30:185–189

    Article  CAS  Google Scholar 

  • Prasad R (2017) Mycoremediation and environmental sustainability, vol 1. Springer International Publishing. ISBN 978-3-319-68957-9 https://link.springer.com/book/10.1007/978-3-319-68957-9

  • Prasad R (2018) Mycoremediation and environmental sustainability, vol 2. Springer International Publishing. ISBN 978-3-319-77386-5 https://www.springer.com/us/book/9783319773858

  • Purnomo AS, Mori T, Putra SR, Kondo R (2013) Biotransformation of heptachlor and heptachlor epoxide by white-rot fungus Pleurotus ostreatus. Int Biodeterior Biodegrad 82:40–44

    Article  CAS  Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley-Interscience, Hoboken

    Book  Google Scholar 

  • Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409:2430–2442

    Article  CAS  Google Scholar 

  • Stamets P (2005) Mycelium running: how mushroom can help save the world. In: Ten speed press. Crown Publishing Group, New York

    Google Scholar 

  • Tabet JC, Lichtenstein EP (1976) Degradation of [14C] photodieldrin by Trichoderma viride as affected by other insecticides. Can J Microbiol 22:1345–1356

    Article  CAS  Google Scholar 

  • Tang J, Liu L, Huang X, Li Y, Chen Y, Chen J (2010) Proteomic analysis of Trichoderma atroviride mycelia stressed by organophosphate pesticide dichlorvos. Can J Microbiol 56:121–127

    Article  CAS  Google Scholar 

  • Tay CC, Liew HH, Yin CY, Abdul-Talib S, Surif S, Suhaimi AA, Yong SK (2011) Biosorption of cadmium ions using Pleurotus ostreatus: growth kinetics, isotherm study and biosorption mechanism. Korean J Chem Eng 28:825–830

    Article  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    Article  CAS  Google Scholar 

  • Tsujiyama S, Muraoka T, Takada N (2013) Biodegradation of 2,4-dichlorophenol by shiitake mushroom (Lentinula edodes) using vanillin as an activator. Biotechnol Lett 35:1079–1083

    Article  CAS  Google Scholar 

  • VanAcken LM, Godefroid CM, Peres H, Naveau ASN, Agathos SN (1999) Mineralization of 14C-U ring labeled 4-hydroxylamino-2,6-dinitrotoluene by manganese dependent peroxidase of the white-rot basidiomycete Phlebia radiate. J Biotechnol 68(2–3):159–169

    Article  Google Scholar 

  • Xiezhi Y, Jieming C, Ming HM (2005) Earthworm-mycorrhiza interaction on Cd uptake and growth of ryegrass. Soil Biol Biochem 37:195–201

    Article  Google Scholar 

  • Yazdani M, Yap CK, Abdullah F, Tan SG (2009) Trichoderma atroviride as a bioremediator of Cu pollution: an in vitro study. Toxicol Environ Chem 91(7):1305–1314

    Article  CAS  Google Scholar 

  • Zhou X, Xu S, Liu L, Chen J (2007) Degradation of cyanide by Trichoderma mutants constructed by restriction enzyme mediated integration (REMI). Bioresour Technol 98:2958–2962

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, M., Ansari, R.A., Ashraf, S. (2018). Does Mycoremediation Reduce the Soil Toxicant?. In: Kumar, V., Kumar, M., Prasad, R. (eds) Phytobiont and Ecosystem Restitution. Springer, Singapore. https://doi.org/10.1007/978-981-13-1187-1_21

Download citation

Publish with us

Policies and ethics