Skip to main content

Comprehensive Assessment of Curcumin as a Functional Food

  • Chapter
  • First Online:
Book cover Functional Food and Human Health

Abstract

The importance of bioactive compounds present in natural sources has withdrawn ample attention in human nutrition and established as “functional food” in the field of food chemistry and as “preventive medicine” in the field of pharmacology and healthcare. Curcumin is one such promising and well-studied natural bioactive plant compound that is present in Curcuma longa and known for providing various protective effects in different diseased states. This chapter highlights the present understanding of various protective effects of curcumin in wide range of diseases including cancer, cardiovascular diseases, diabetes, obesity, Alzheimer’s disease, etc. The major emphasis is on the molecular pathways associated with curcumin-mediated effects. The significance of its unique structure attributing to its function and present advances in curcumin applications to overcome its limitations has also been discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal NB, Jain S, Nagpal D et al (2013) Liposomal formulation of curcumin attenuates seizures in different experimental models of epilepsy in mice. Fundam Clin Pharmacol 27(2):169–172

    Article  CAS  Google Scholar 

  2. Anand P, Thomas SG, Kunnumakkara AB et al (2008) Biological activities of curcumin and its analogues (congeners) made by man and mother nature. Biochem Pharmacol 76:1590–1611

    Article  CAS  Google Scholar 

  3. Baker RG, Hayden MS, Ghosh S (2011) NF-κB, inflammation and metabolic disease. Cell Metab 13(1):11–22

    Article  CAS  Google Scholar 

  4. Bhandarkar SS, Arbiser JL (2007) Curcumin as an inhibitor of angiogenesis. Adv Exp Med Biol 595:185–195

    Article  Google Scholar 

  5. Balunas MJ, Kinghorn AD (2005) Drug discovery from medicinal plants. Life Sci 78:431–441

    Article  CAS  Google Scholar 

  6. Bisht S, Feldmann G, Soni S et al (2007) Polymeric nanoparticle encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J Nanobiotechnol 5:3

    Article  Google Scholar 

  7. Borkar N, Andersson DR, Yang M et al (2017) Efficacy of oral lipid-based formulations of apomorphine and its diester in a Parkinson’s disease rat model. J Pharm Pharmacol 69(9):1110–1115

    Article  CAS  Google Scholar 

  8. Bradford PG (2013) Curcumin and obesity. Biofactors 39(1):78–87

    Article  CAS  Google Scholar 

  9. Chang MT, Tsai TR, Lee CY et al (2013) Elevating bioavailability of curcumin via encapsulation with a novel formulation of artificial oil bodies. J Agric Food Chem 61:9666–9671

    CAS  PubMed  Google Scholar 

  10. Cheng AL, Hsu CH, Lin JK et al (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or premalignant lesions. Anticancer Res 21:2895–2900

    CAS  PubMed  Google Scholar 

  11. Chendil D, Ranga RS, Meigooni D et al (2004) Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene 23:1599–1607

    Article  CAS  Google Scholar 

  12. Choudhuri T, Pal S, Das T et al (2005) Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem 280:20059–20068

    Article  CAS  Google Scholar 

  13. Chuengsamarn S, Rattanamongkolgul S, Luechapudiporn R et al (2012) Curcumin extract for prevention of type 2 diabetes. Diabetes Care 35(11):2121–2127

    Article  CAS  Google Scholar 

  14. Chuengsamarn S, Rattanamongkolgul S, Phonrat B et al (2014) Reduction of atherogenic risk in patients with type 2 diabetes by curcuminoid extract: a randomized controlled trial. J Nutr Biochem 25(2):144–150

    Article  CAS  Google Scholar 

  15. Farajzadeh R, Pilehvar-Soltanahmadi Y, Dadashpour M et al (2017) Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells. Artif Cells Nanomed Biotechnol 5:1–9

    Article  Google Scholar 

  16. Farhangkhoee H, Khan ZA, Mukherjee S et al (2003) Heme oxygenase in diabetes-induced oxidative stress in the heart. J Mol Cell Cardiol 35(12):1439–1448

    Article  CAS  Google Scholar 

  17. Farhangkhoee H, Khan ZA, Chen S et al (2006) Differential effects of curcumin on vasoactive factors in the diabetic rat heart. Nutr Metab (Lond) 3:27

    Article  Google Scholar 

  18. Fleenor BS, Sindler AL, Marvi NK et al (2013) Curcumin ameliorates arterial dysfunction and oxidative stress with aging. Exp Gerontol 48:269–276

    Article  CAS  Google Scholar 

  19. Gao Y, Li Z, Sun M (2011) Preparation and characterization of intravenously injectable curcumin nanosuspension. Drug Deliv 18(2):131–142

    Article  CAS  Google Scholar 

  20. Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 75:787–809

    Article  CAS  Google Scholar 

  21. Gupta SC, Patchva S, Aggarwal BB (2013) Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 15:195–218

    Article  CAS  Google Scholar 

  22. Gurib-Fakim A (2006) Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Asp Med 27:1–93

    Article  CAS  Google Scholar 

  23. Hajavi J, Abbas-Momtazi A, Johnston TP et al (2017) Curcumin: a naturally occurring modulator of adipokines in diabetes. J Cell Biochem. https://doi.org/10.1002/jcb.26121

    Article  CAS  Google Scholar 

  24. Hasan M, Belhaj N, Benachour H et al (2014) Liposome encapsulation of curcumin: physico-chemical characterizations and effects on MCF7 cancer cell proliferation. Int J Pharm 461(1–2):519–528

    Article  CAS  Google Scholar 

  25. Hatcher H, Planalp R, Cho J et al (2008) Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 65:1631–1652

    Article  CAS  Google Scholar 

  26. Heger M, van Golen RF, Broekgaarden M et al (2014) The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev 66:222–307

    Article  Google Scholar 

  27. Helson L (2013) Curcumin (diferuloylmethane) delivery methods: a review. Biofactors 39:21–26

    Article  CAS  Google Scholar 

  28. Hong JH, Ahn KS, Bae E et al (2006) The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivo. Prostate Cancer Prostatic Dis 9:147–152

    Article  CAS  Google Scholar 

  29. Ismail NA, Ragab S, Abd El Baky ANE et al (2014) Effect of oral curcumin administration on insulin resistance, serum resistin and fetuin-A in obese children: randomized placebo-controlled study. RJPBCS 5:887–896

    CAS  Google Scholar 

  30. Ismail NA, Abd El Dayem SM, Salama E et al (2016) Impact of curcumin intake on gluco-insulin homeostasis, leptin and adiponectin in obese subjects. RJPBCS 7:1891–1897

    CAS  Google Scholar 

  31. Jagetia GC, Rajanikant GK (2012) Acceleration of wound repair by curcumin in the excision wound of mice exposed to different doses of fractionated γ radiation. Int Wound J 9(1):76–92

    Article  Google Scholar 

  32. Jiménez-Flores LM, Lopez-Briones S, Macías-Cervantes MH et al (2014) A PPARγ, NF-κB and AMPK-dependent mechanism may be involved in the beneficial effects of curcumin in the diabetic db/db mice liver. Molecules 19(6):8289–8302

    Article  Google Scholar 

  33. Khan MA, Akhtar N, Sharma V et al (2015) Product development studies on sonocrystallized curcumin for the treatment of gastric cancer. Pharmaceutics 7(2):43–63

    Article  CAS  Google Scholar 

  34. Kundu P, Mohanty C, Sahoo S (2012) Antiglioma activity of curcumin loaded lipid nanoparticles and its enhanced bioavailability in brain tissue for effective glioblastoma therapy. Acta Biomater 8(7):2670–2687

    Article  CAS  Google Scholar 

  35. Lao CD, Ruffin MT 4th, Normolle D et al (2006) Dose escalation of a curcuminoid formulation. BMC Complement Altern Med 6:10

    Article  Google Scholar 

  36. Leclercq IA, Farrell GC, Sempoux C et al (2004) Curcumin inhibits NF-kappa B activation and reduces the severity of experimental steatohepatitis in mice. J Hepatol 41(6):926–934

    Article  CAS  Google Scholar 

  37. Li H, Zhang N, Hao Y et al (2014a) Formulation of curcumin delivery with functionalized single-walled carbon nanotubes: characteristics and anticancer effects in vitro. Drug Deliv 21(5):379–387

    Article  CAS  Google Scholar 

  38. Li X, Chen T, Xu L et al (2014b) Preparation of curcumin micelles and the in vitro and in vivo evaluation for cancer therapy. J Biomed Nanotechnol 10(8):1458–1468

    Article  CAS  Google Scholar 

  39. Li X, Yuan H, Zhang C et al (2016) Preparation and in-vitro/in-vivo evaluation of curcumin nanosuspension with solubility enhancement. J Pharm Pharmacol 68(8):980–988

    Article  CAS  Google Scholar 

  40. Liu L, Zhang P, Li Y et al (2012) Curcumin protects brain from oxidative stress through inducing expression of UCP2 in chronic cerebral hypo perfusion aging-rats. Mol Neurodegener 7:S10

    Article  Google Scholar 

  41. Liu Y, Cheng F, Luo Y (2017) PEGylated curcumin derivative attenuates hepatic steatosis via CREB/PPAR-γ/CD36 pathway. Biomed Res Int 2017:8234507

    PubMed  PubMed Central  Google Scholar 

  42. Lopez-Jornet P, Camacho-Alonso F, Jimenez-Torres MJ et al (2011) Topical curcumin for the healing of carbon dioxide laser skin wounds in mice. Photomed Laser Surg 29(12):809–814

    Article  CAS  Google Scholar 

  43. Luer S, Troller R, Jetter M et al (2011) Topical curcumin can inhibit deleterious effects of upper respiratory tract bacteria on human oropharyngeal cells in vitro: potential role for patients with cancer therapy induced mucositis? Support Care Cancer 19(6):799–806

    Article  Google Scholar 

  44. Madaric A, Kadrabova J, Krajcovicova-Kudlackova M et al (2013) The effect of bioactive complex of quercetin, selenium, catechins and curcumin on cardiovascular risk markers in healthy population after a two month consumption. Bratisl Lek Listy 114(2):84–87

    CAS  PubMed  Google Scholar 

  45. Meng B, Li J, Cao H (2013) Antioxidant and anti-inflammatory activities of curcumin on diabetes mellitus and its complications. Curr Pharm Des 19(11):2101–2113

    CAS  PubMed  Google Scholar 

  46. Mutsuga M, Chambers JK, Uchida K et al (2012) Binding of curcumin to senile plaques and cerebral amyloid angiopathy in the aged brain of various animals and to neurofibrillary tangles in Alzheimer's brain. J Vet Med Sci 74(1):51–57

    Article  CAS  Google Scholar 

  47. Naksuriya O, Okonogi S, Schiffelers RM et al (2014) Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 35(10):3365–3383

    Article  CAS  Google Scholar 

  48. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70(3):461–477

    Article  CAS  Google Scholar 

  49. Nonn L, Duong D, Peehl DM (2007) Chemopreventive anti-inflammatory activities of curcumin and other phytochemicals mediated by MAP kinase phosphatase-5 in prostate cells. Carcinogenesis 28(6):1188–1196

    Article  CAS  Google Scholar 

  50. Pandit RS, Gaikwad SC, Agarkar GA (2015) Curcumin nanoparticles: physico-chemical fabrication and its in vitro efficacy against human pathogens. 3. Biotech 5(6):991–997

    Google Scholar 

  51. Park JH, Kim HA, Park JH et al (2012) Amphiphilic peptide carrier for the combined delivery of curcumin and plasmid DNA into the lungs. Biomaterials 33(27):6542–6550

    Article  CAS  Google Scholar 

  52. Peng YM, Zheng JB, Zhou YB, Li J (2013) Characterization of a novel curcumin analog P1 as potent inhibitor of the NF-κB signaling pathway with distinct mechanisms. Acta pharmacol Sin 34(7):939–950

    Article  CAS  Google Scholar 

  53. Peng SF, Lee CY, Hour MJ (2014) Curcumin-loaded nanoparticles enhance apoptotic cell death of U2OS human osteosarcoma cells through the Akt-Bad signaling pathway. Int J Oncol 44(1):238–246

    Article  Google Scholar 

  54. Prasad S, Tyagi AK, Aggarwal BB (2014) Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 46(1):2–18

    Article  CAS  Google Scholar 

  55. Priyadarsini KI (2014) The chemistry of curcumin: from extraction to therapeutic agent. Molecules 19(12):20091–20112

    Article  Google Scholar 

  56. Parimita SP, Ramshankar YV, Suresh S et al (2007) Redetermination of curcumin: (1E,4Z,6E)- 5-hydroxy-1,7-bis(4-hydroxy-3-methoxy- phenyl)hepta-1,4,6- trien-3-one. Acta Cryst E63:860–862

    Google Scholar 

  57. Sari TP, Mann B, Kumar R et al (2015) Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocoll 43:540–546

    Article  CAS  Google Scholar 

  58. Shehzad A, Wahid F, Lee YS (2010) Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch Pharm (Weinheim) 343(9):489–499

    Article  CAS  Google Scholar 

  59. Shehzad A, Lee J, Lee YS (2013) Curcumin in various cancers. Biofactors 39(1):56–68

    Article  CAS  Google Scholar 

  60. Shen JD, Wei Y, Li YJ et al (2017) Curcumin reverses the depressive-like behavior and insulin resistance induced by chronic mild stress. Metab Brain Dis 32(4):1163–1172

    Article  CAS  Google Scholar 

  61. Shoba G, Joy D, Joseph T et al (2007) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64(4):353–366

    Article  Google Scholar 

  62. Somparn P, Phisalaphong C, Nakornchai S (2007) Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biol Pharm Bull 30(1):74–78

    Article  CAS  Google Scholar 

  63. Song SJ, Lee S, Ryu KS et al (2017) Amphiphilic peptide nanorods based on oligophenylalanine as a biocompatible drug carrier. Bioconjug Chem. https://doi.org/10.1021/acs.bioconjchem.7b00247

    Article  CAS  Google Scholar 

  64. Stanic Z (2017) Curcumin, a compound from natural sources, a true scientific challenge – a review. Plant Foods Hum Nutr 72(1):1–12

    Article  CAS  Google Scholar 

  65. Tian M, Wang L, Yu G et al (2012) Curcumin promotes cholesterol efflux from brain through LXR/RXR-ABCA1-apoA1 pathway in chronic cerebral hypoperfusion aging-rats. Mol Neurodegener 7(1):S7

    Article  Google Scholar 

  66. Tonnesen HH, Masson M, Loftsson T (2002) Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm 244:127–135

    Article  CAS  Google Scholar 

  67. Van der Zanden LD, van Kleef E, de Wijk RA et al (2014) Knowledge, perceptions and preferences of elderly regarding protein-enriched functional food. Appetite 80:16–22

    Article  Google Scholar 

  68. Varemo L, Henriksen TI, Scheele C et al (2017) Type 2 diabetes and obesity induce similar transcriptional reprogramming in human myocytes. Genome Med 9(1):47

    Article  Google Scholar 

  69. Wang YJ, Pan MH, Cheng AL et al (1997) Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 15:1867–1876

    Article  CAS  Google Scholar 

  70. Wang P, Su C, Feng H et al (2017) Curcumin regulates insulin pathways and glucose metabolism in the brains of APPswe/PS1dE9 mice. Int J Immunopathol Pharmacol 30(1):25–43

    Article  CAS  Google Scholar 

  71. WHO technical report series-922 (2003) Evaluation of certain food additives and contaminants: sixty-first report of the Joint FAO/WHO Expert Committee on Food Additives, Rome, Italy

    Google Scholar 

  72. Wongcharoen W, Phrommintikul A (2009) The protective role of curcumin in cardiovascular diseases. Int J Cardiol 133:145–151

    Article  Google Scholar 

  73. Yang X, Li Z, Wang N (2015) Curcumin-encapsulated polymeric micelles suppress the development of colon cancer in vitro and in vivo. Sci Rep 5:10322

    Article  CAS  Google Scholar 

  74. Yang KY, Lin LC, Tseng TY et al (2007) Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 853:183–189

    Article  CAS  Google Scholar 

  75. Zaman MS, Chauhan N, Yallapu MM et al (2016) Curcumin nanoformulation for cervical cancer treatment. Sci Rep 6:20051

    Article  CAS  Google Scholar 

  76. Zhang DW, Fu M, Gao SH et al (2013) Curcumin and diabetes: a systematic review. Evid Based Complement Alternat Med 2013:636053

    PubMed  PubMed Central  Google Scholar 

  77. Zhongfa L, Chiu M, Wang J et al (2012) Enhancement of curcumin oral absorption and pharmacokinetics of curcuminoids and curcumin metabolites in mice. Cancer Chemother Pharmacol 69(3):679–689

    Article  Google Scholar 

Download references

Acknowledgment

We acknowledge the Jaypee Institute of Information Technology for providing the infrastructure and literature support for conducting the detailed study presented in the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibha Rani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, A., Saxena, S., Rani, V. (2018). Comprehensive Assessment of Curcumin as a Functional Food. In: Rani, V., Yadav, U. (eds) Functional Food and Human Health. Springer, Singapore. https://doi.org/10.1007/978-981-13-1123-9_6

Download citation

Publish with us

Policies and ethics