Skip to main content

Diabetic Retinopathy: Clinical, Genetic, and Health Economics (An Asian Perspective)

  • Chapter
  • First Online:
Advances in Vision Research, Volume II

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 615 Accesses

Abstract

Diabetes mellitus is the fastest growing disease in the world that is estimated to reach nearly half a billion in 2045, and a third of them would have microvascular complication like diabetic retinopathy (DR). Hyperglycemia, hypertension, and dyslipidemia are some of the controllable risk factors. DR is classified into nonproliferative, proliferative, and macular edema types. Many molecular factors like VEGF, ALR2, eNOS, MTHFR, ACE, IGF, and RAGE and its associated single nucleotide polymorphisms play a critical role in the process of neovascularization. Some of the drug discovery and newer treatment regimens are based on these molecular factors. More research by the clinicians, epidemiologists, and vision scientists is necessary to reduce the visual morbidity and disease burden of DR in the community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IDF. IDF Diabetes Atlas – 8th Edition; 2017.

    Google Scholar 

  2. Congdon N, Zheng Y, He M. The worldwide epidemic of diabetic retinopathy. Indian J Ophthalmol [Internet]. 2012;60(5):428. Available from: http://www.ijo.in/text.asp?2012/60/5/428/100542

    Article  Google Scholar 

  3. Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis [Internet]. 2015;2(1):17. Available from: http://www.eandv.org/content/2/1/17

    Article  Google Scholar 

  4. Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, et al. Policy and practice. Bull World Health Organ [Internet]. 2004;82(11):844–51. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=15640920&retmode=ref&cmd=prlinks%5Cnpapers2: //publication/uuid/BAA31E85-D8BD-4CD4-A484-651963213B14

    Google Scholar 

  5. World Health Organization. Prevention of blindness from diabetes mellitus. Geneva WHO [Internet]. 2005:1–48. Available from: http://search.who.int/search?q=Prevention+of+blindness+&ie=utf8&site=who&client=_en_r&proxystylesheet=_en_r&output=xml:no_dtd&oe=utf8&getfields=doctype

  6. Yau JWY, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care [Internet]. 2012;35(3):556–64. Available from: http://care.diabetesjournals.org/cgi/doi/10.2337/dc11-1909

    Article  Google Scholar 

  7. Cohen SR, Gardner TW. Diabetic retinopathy and diabetic macular Edema. Dev Ophthalmol [Internet]. 2016;55:137–46. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4775164/

    Article  Google Scholar 

  8. Mohan V, Pradeepa R. Epidemiology of diabetes in different regions of India. Heal Adm. 2009;22(1):1–18.

    Google Scholar 

  9. Gadkari S, Maskati Q, Nayak B. Prevalence of diabetic retinopathy in India: the all India ophthalmological society diabetic retinopathy eye screening study 2014. Indian J Ophthalmol [Internet]. 2016;64(1):38. Available from: http://www.ijo.in/text.asp?2016/64/1/38/178144

    Article  Google Scholar 

  10. Sunita M, Singh AK, Rogye A, Sonawane M, Gaonkar R, Srinivasan R, et al. Prevalence of diabetic retinopathy in urban slums: the Aditya Jyot diabetic retinopathy in urban Mumbai slums study-report 2. Ophthalmic Epidemiol. 2017;24(5):303–10.

    Article  Google Scholar 

  11. Hovind P, Tarnow L, Rossing K, Rossing P, Eising S, Larsen N, et al. Decreasing incidence of severe diabetic microangiopathy in type 1 diabetes. Diabetes Care. 2003;26(4):1258–64.

    Article  Google Scholar 

  12. Kumar J. Economic burden of diabetes. Med Updat [Internet]. 2013:205–8. Available from: http://www.apiindia.org/medicine_update_2013/chap45.pdf

  13. Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet (London, England). 2010;376(9735):124–36.

    Article  Google Scholar 

  14. Liew G, Klein R, Wong TY. The role of genetics in susceptibility to diabetic retinopathy. Int Ophthalmol Clin [Internet]. 2009;49(2):35–52. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746819/

    Article  Google Scholar 

  15. Lim LS, Wong TY. Lipids and diabetic retinopathy. Expert Opin Biol Ther. 2012;12(1):93–105.

    Article  Google Scholar 

  16. Zhang W, Liu H, Rojas M, Caldwell RW, Caldwell RB. Anti-inflammatory therapy for diabetic retinopathy. Immunotherapy [Internet]. 2011;3(5):609–28. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3671852/

    Article  CAS  Google Scholar 

  17. Levene R, Horton G, Gorn R. Flat-mount studies of human retinal vessels. Am J Ophthalmol [Internet]. 2018;61(2):283–9. Available from: https://doi.org/10.1016/0002-9394(66)90285-6

    Article  Google Scholar 

  18. Yanoff M. Ocular pathology of diabetes mellitus. Am J Ophthalmol [Internet]. 2018;67(1):21–38. Available from: https://doi.org/10.1016/0002-9394(69)90004-X

    Article  Google Scholar 

  19. Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. J Clin Invest. 1998;102(4):783–91.

    Article  CAS  Google Scholar 

  20. Abu El-Asrar AM, Dralands L, Missotten L, Al-Jadaan IA, Geboes K. Expression of apoptosis markers in the retinas of human subjects with diabetes. Investig Ophthalmol Vis Sci. 2004;45(8):2760–6.

    Article  Google Scholar 

  21. Lutty GA, DS ML, Merges C, Diggs A, Plouét J. Localization of vascular endothelial growth factor in human retina and choroid. Arch Ophthalmol [Internet]. 1996;114(8):971–7. Available from: https://doi.org/10.1001/archopht.1996.01100140179011

    Article  CAS  Google Scholar 

  22. Carrasco E, Hernández C, Miralles A, Huguet P, Farrés J, Simó R. Lower somatostatin expression is an early event in diabetic retinopathy and is. Diabetes Care [Internet]. 2007;30(11):2902–8. Available from: http://care.diabetesjournals.org/content/30/11/2902

    Article  CAS  Google Scholar 

  23. Carrasco E, Hernández C, de Torres I, Farrés J, Simó R. Lowered cortistatin expression is an early event in the human diabetic retina and is associated with apoptosis and glial activation. Mol Vis [Internet]. 2008;14(July):1496–502. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2516506&tool=pmcentrez&rendertype=abstract

    CAS  Google Scholar 

  24. Kase S, Ishida S, Rao NA. Increased expression of αA-crystallin in human diabetic eye. Int J Mol Med. 2011;28(4):505–11.

    CAS  PubMed  Google Scholar 

  25. Simó R, Hernández C. Advances in the medical treatment of diabetic retinopathy. Diabetes Care. 2009;32(8):1556–62.

    Article  Google Scholar 

  26. Abu El-Asrar AM, Struyf S, Kangave D, Geboes K, Van Damme J. Chemokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. Eur Cytokine Netw. 2006;17(3):155–65.

    CAS  PubMed  Google Scholar 

  27. Wakabayashi Y, Usui Y, Okunuki Y, Kezuka T, Takeuchi M, Goto H, et al. Correlation of vascular endothelial growth factor with chemokines in the vitreous in diabetic retinopathy. Retina. 2010;30(2):339–44.

    Article  Google Scholar 

  28. Cheung CMG, Vania M, Ang M, Chee SP, Li J. Comparison of aqueous humor cytokine and chemokine levels in diabetic patients with and without retinopathy. Mol Vis [Internet]. 2012;18(November 2011):830–7. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3327438&tool=pmcentrez&rendertype=abstract

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Suzuki Y, Nakazawa M, Suzuki K, Yamazaki H, Miyagawa Y. Expression profiles of cytokines and chemokines in vitreous fluid in diabetic retinopathy and central retinal vein occlusion. Jpn J Ophthalmol. 2011;55(3):256–63.

    Article  CAS  Google Scholar 

  30. Schwartzman ML, Iserovich P, Gotlinger K, Bellner L, Dunn MW, Sartore M, et al. Profile of lipid and protein autacoids in diabetic vitreous correlates with the progression of diabetic retinopathy. Diabetes. 2010;59(7):1780–8.

    Article  CAS  Google Scholar 

  31. Oh IK, Kim S-W, Oh J, Lee TS, Huh K. Inflammatory and angiogenic factors in the aqueous humor and the relationship to diabetic retinopathy. Curr Eye Res. 2010;35(12):1116–27.

    Article  CAS  Google Scholar 

  32. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331(22):1480–7.

    Article  CAS  Google Scholar 

  33. Kitada S, Otsuka Y, Kokubu N, Kasahara Y, Kataoka Y, Noguchi T, et al. Post-load hyperglycemia as an important predictor of long-term adverse cardiac events after acute myocardial infarction: a scientific study. Cardiovasc Diabetol [Internet]. 2010;9(1):75. Available from: http://www.cardiab.com/content/9/1/75

    Article  Google Scholar 

  34. Santos JM, Mohammad G, Zhong Q, Kowluru RA. Diabetic retinopathy, superoxide damage and antioxidants. Curr Pharm Biotechnol [Internet]. 2011;12(3):352–61. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3214730&tool=pmcentrez&rendertype=abstract

    Article  CAS  Google Scholar 

  35. Frank RN. Diabetic retinopathy. N Engl J Med. 2004;350(1):48–58.

    Article  CAS  Google Scholar 

  36. Ma JH, Wang JJ, Zhang SX. The unfolded protein response and diabetic retinopathy. J Diabetes Res [Internet]. 2014;2014:160140. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=25530974

    Google Scholar 

  37. Kowluru RA, Tang J, Kern TS. Abnormalities of retinal metabolism in diabetes and experimental galactosemia. VII. Effect of long-term administration of antioxidants on the development of retinopathy. Diabetes. 2001;50(8):1938–42.

    Article  CAS  Google Scholar 

  38. Neural. Mechanisms of retinal neuroprotection of calcium dobesilate: therapeutic implications. Neural Regen Res. 2017;12(10):2017–9.

    Google Scholar 

  39. Robinson R, Barathi VA, Chaurasia SS, Wong TY, Kern TS. Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis Model Mech [Internet]. 2012;5(4):444–56. Available from: http://dmm.biologists.org/cgi/doi/10.1242/dmm.009597

    Article  CAS  Google Scholar 

  40. Mohamed Q, Gillies MC, Wong TY. Management of diabetic retinopathy: a systematic review. JAMA. 2007;298(8):902–16.

    Article  CAS  Google Scholar 

  41. Toussaint D, Cogan DG, Kuwabara T. Extravascular lesions of diabetic retinopathy. Arch Ophthalmol [Internet]. 1962;67(1):42–7. Available from: https://doi.org/10.1001/archopht.1962.00960020044007

    Article  CAS  Google Scholar 

  42. Rezaee MRS, Amiri AA, Hashemi-Soteh MB, Daneshvar F, Emady-Jamaly R, Jafari R, et al. Aldose reductase C-106T gene polymorphism in type 2 diabetics with microangiopathy in Iranian individuals. Indian J Endocrinol Metab [Internet]. 2015;19(1):95–9. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287789/

    Article  CAS  Google Scholar 

  43. Marzouk SA, Zied AAA, Zakaria NH, Gharraf ES. Experimental and clinical research original article role of aldose reductase C-106T polymorphism among diabetic Egyptian patients with different microvascular complications. Am J Exp Clin Res. 2014;1(2):18–24.

    Google Scholar 

  44. Deng Y, Yang X-F, Gu H, Lim A, Ulziibat M, Snellingen T, et al. Association of C(−106)T polymorphism in aldose reductase gene with diabetic retinopathy in chinese patients with type 2 diabetes mellitus. Vol. 29, Chinese medical sciences journal = Chung-kuo i hsüeh k’o hsüeh tsa chih/Chinese Academy of Medical Sciences; 2014. 1–6 p.

    Google Scholar 

  45. Hampton BM, Schwartz SG, Brantley MA, Flynn HW. Update on genetics and diabetic retinopathy. Clin Ophthalmol. 2015;2015:2175–93.

    Google Scholar 

  46. Kaur N, Vanita V. Association of aldose reductase gene (AKR1B1) polymorphism with diabetic retinopathy. Diabetes Res Clin Pract [Internet]. 2016;121:41–8. Available from: https://doi.org/10.1016/j.diabres.2016.08.019

    Article  CAS  Google Scholar 

  47. Kumaramanickavel G, Sripriya S, Ramprasad VL, Upadyay NK, Paul PG, Sharma T. Z-2 aldose reductase allele and diabetic retinopathy in India. Ophthalmic Genet. 2003;24(1):41–8.

    Article  Google Scholar 

  48. Abhary S, Hewitt AW, Burdon KP, Craig JE. A systematic meta-analysis of genetic association studies for diabetic retinopathy. Diabetes. 2009;58(9):2137–47.

    Article  CAS  Google Scholar 

  49. Ichikawa F, Yamada K, Ishiyama-Shigemoto S, Yuan X, Nonaka K. Association of an (A-C)n dinucleotide repeat polymorphic marker at the 5′-region of the aldose reductase gene with retinopathy but not with nephropathy or neuropathy in Japanese patients with type 2 diabetes mellitus. Diabet Med. 1999;16(9):744–8.

    Article  CAS  Google Scholar 

  50. Ko BC, Lam KS, Wat NM, Chung SS. An (A-C)n dinucleotide repeat polymorphic marker at the 5′ end of the aldose reductase gene is associated with early-onset diabetic retinopathy in NIDDM patients. Diabetes. 1995;44(7):727–32.

    Article  CAS  Google Scholar 

  51. Petrovic MG, Peterlin B, Hawlina M, Petrovic D. Aldose reductase (AC)n gene polymorphism and susceptibility to diabetic retinopathy in type 2 diabetes in Caucasians. J Diabetes Complicat. 2005;19(2):70–3.

    Article  Google Scholar 

  52. Li Q, Xie P, Huang J, Gu Y, Zeng W, Song H. Polymorphisms and functions of the aldose reductase gene 5′ regulatory region in Chinese patients with type 2 diabetes mellitus. Chin Med J. 2002;115:209–13.

    Google Scholar 

  53. Ikegishi Y, Tawata M, Aida K, Onaya T. Z-4 allele upstream of the aldose reductase gene is associated with proliferative retinopathy in Japanese patients with NIDDM, and elevated luciferase gene transcription in vitro. Life Sci [Internet]. 1999;65(20):2061–70. Available from: http://www.sciencedirect.com/science/article/pii/S002432059900329X

    Article  CAS  Google Scholar 

  54. Uthra S, Raman R, Mukesh BN, Rajkumar SA, Kumari P, Lakshmipathy P, et al. Diabetic retinopathy: validation study of ALR2, RAGE, iNOS and TNFB gene variants in a south indian cohort. Ophthalmic Genet. 2010;31(4):244–51.

    Article  CAS  Google Scholar 

  55. Taverna MJ, Elgrably F, Selmi H, Selam J-L, Slama G. The T-786C and C774T endothelial nitric oxide synthase gene polymorphisms independently affect the onset pattern of severe diabetic retinopathy. Nitric Oxide Biol Chem. 2005;13(1):88–92.

    Article  CAS  Google Scholar 

  56. 9_chapters_thesis [Internet]. Available from: shodhganga.inflibnet.ac.in/jspui/bitstream/10603/124402/4/9_chapters_thesis.doc.

    Google Scholar 

  57. Lindholm E, Bakhtadze E, Sjogren M, Cilio CM, Agardh E, Groop L, et al. The −374 T/A polymorphism in the gene encoding RAGE is associated with diabetic nephropathy and retinopathy in type 1 diabetic patients. Diabetologia. 2006;49(11):2745–55.

    Article  CAS  Google Scholar 

  58. Niu W, Qi Y, Wu Z, Liu Y, Zhu D, Jin W. A meta-analysis of receptor for advanced glycation end products gene: four wellevaluated polymorphisms with diabetes mellitus. Mol Cell Endocrinol. 2012;358(1):9–17.

    Article  CAS  Google Scholar 

  59. Paine SK, Basu A, Mondal LK, Sen A, Choudhuri S, Chowdhury IH, et al. Association of vascular endothelial growth factor, transforming growth factor beta, and interferon gamma gene polymorphisms with proliferative diabetic retinopathy in patients with type 2 diabetes. Mol Vis. 2012;18:2749–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Simó-Servat O, Hernández C, Simó R. Genetics in diabetic retinopathy: current concepts and new insights. Curr Genomics. 2013;14:289–99.

    Article  Google Scholar 

  61. Uthra S, Raman R, Mukesh BN, Rajkumar SA, Padmaja KR, Paul PG, et al. Association of VEGF gene polymorphisms with diabetic retinopathy in a south Indian cohort. Ophthalmic Genet. 2008;29(1):11–5.

    Article  CAS  Google Scholar 

  62. Saleem S, Azam A, Maqsood SI, Muslim I, Bashir S, Fazal N, et al. Role of ACE and PAI-1 polymorphisms in the development and progression of diabetic retinopathy. PLoS One [Internet]. 2015;10(12):e0144557. Available from: https://doi.org/10.1371/journal.pone.0144557

    Article  Google Scholar 

  63. Kankova K, Muzik J, Karaskova J, Beranek M, Hajek D, Znojil V, et al. Duration of non-insulin-dependent diabetes mellitus and the TNF-beta NcoI genotype as predictive factors in proliferative diabetic retinopathy. Ophthalmol J Int d’ophtalmologie Int J Ophthalmol Zeitschrift fur Augenheilkd. 2001;215(4):294–8.

    Article  CAS  Google Scholar 

  64. Kumaramanickavel G, Sripriya S, Vellanki RN, Upadyay NK, Badrinath SS, Arokiasamy T, et al. Tumor necrosis factor allelic polymorphism with diabetic retinopathy in India. Diabetes Res Clin Pract. 2001;54(2):89–94.

    Article  CAS  Google Scholar 

  65. Uthra S, Raman R, Mukesh BN, Rajkumar SA, Kumari RP, Lakshmipathy P, et al. Protein kinase C β (PRKCB1) and pigment epithelium derived factor (PEDF) gene polymorphisms and diabetic retinopathy in a south Indian cohort. Ophthalmic Genet [Internet]. 2010;31(1):18–23. Available from: https://doi.org/10.3109/13816810903426231

    Article  CAS  Google Scholar 

  66. Uthra S, Raman R, Mukesh BN, Rajkumar SA, Kumari RP, Agarwal S, et al. Diabetic retinopathy and IGF-1 gene polymorphic cytosine-adenine repeats in a Southern Indian cohort. Ophthalmic Res. 2007;39(5):294–9.

    Article  CAS  Google Scholar 

  67. Awata T, Inoue K, Kurihara S, Ohkubo T, Watanabe M, Inukai K, et al. A common polymorphism in the 5′-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes. Diabetes. 2002;51(5):1635–9.

    Article  CAS  Google Scholar 

  68. Awata T, Kurihara S, Takata N, Neda T, Iizuka H, Ohkubo T, et al. Functional VEGF C-634G polymorphism is associated with development of diabetic macular edema and correlated with macular retinal thickness in type 2 diabetes. Biochem Biophys Res Commun 2005;333(3):679–685.

    Google Scholar 

  69. Ray D, Mishra M, Ralph S, Read I, Davies R, Brenchley P. Association of the VEGF gene with proliferative diabetic retinopathy but not proteinuria in diabetes. Diabetes. 2004;53(3):861–4.

    Article  CAS  Google Scholar 

  70. Suganthalakshmi B, Anand R, Kim R, Mahalakshmi R, Karthikprakash S, Namperumalsamy P, et al. Association of VEGF and eNOS gene polymorphisms in type 2 diabetic retinopathy. Mol Vis. 2006;12:336–41.

    CAS  PubMed  Google Scholar 

  71. Yang X, Deng Y, Gu H, Lim A, Altankhuyag A, Jia W, et al. Polymorphisms in the vascular endothelial growth factor gene and the risk of diabetic retinopathy in Chinese patients with type 2 diabetes. Mol Vis [Internet]. 2011;17:3088–96. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233387/

    CAS  Google Scholar 

  72. Yuan Y, Wen Z, Guan Y, Sun Y, Yang J, Fan X, et al. The relationships between type 2 diabetic retinopathy and VEGF634G/C and VEGF-460C/T polymorphisms in Han Chinese subjects. J Diabetes Complicat. 2014;28(6):785–90.

    Article  Google Scholar 

  73. Demaine A, Cross D, Millward A. Polymorphisms of the aldose reductase gene and susceptibility to retinopathy in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci. 2000;41(13):4064–8.

    CAS  PubMed  Google Scholar 

  74. Katakami N, Kaneto H, Takahara M, Matsuoka TA, Imamura K, Ishibashi F, et al. Aldose reductase C-106T gene polymorphism is associated with diabetic retinopathy in Japanese patients with type 2 diabetes. Diabetes Res Clin Pract [Internet]. 2011;92(3):e57–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21420193, [cited 2018 Feb 27]

    Article  CAS  Google Scholar 

  75. Cao M, Tian Z, Zhang L, Liu R, Guan Q, Jiang J. Genetic association of AKR1B1 gene polymorphism rs759853 with diabetic retinopathy risk: a meta-analysis. Gene [Internet]. 2018;676:73–8. Available from: http://www.sciencedirect.com/science/article/pii/S0378111

  76. Albrecht EWJA, Stegeman CA, Heeringa P, Henning RH, van Goor H. Protective role of endothelial nitric oxide synthase. J Pathol [Internet]. 2002;199(1):8–17. Available from: https://doi.org/10.1002/path.1250

    Article  CAS  Google Scholar 

  77. Li C, Dong Y, Lü W. The association between polymorphism of endothelial nitric oxide synthase gene and diabetic nephropathy. Zhonghua nei ke za zhi [Internet]. 2001;40(11):729–32. Available from: http://europepmc.org/abstract/MED/11930675

    CAS  Google Scholar 

  78. Taverna MJ, Sola A, Guyot-Argenton C, Pacher N, Bruzzo F, Chevalier A, et al. eNOS4 polymorphism of the endothelial nitric oxide synthase predicts risk for severe diabetic retinopathy. Diabet Med. 2002;19(3):240–5.

    Article  CAS  Google Scholar 

  79. Kumaramanickavel G, Ramprasad VL, Sripriya S, Upadyay NK, Paul PG, Sharma T. Association of Gly82Ser polymorphism in the RAGE gene with diabetic retinopathy in type II diabetic Asian Indian patients. J Diabetes Complications [Internet]. 2002;16(6):391–4. Available from: https://www.sciencedirect.com/science/article/pii/S1056872702001873, [cited 2018 Feb 27]

    Article  Google Scholar 

  80. Vanita V. Association of RAGE (p.Gly82Ser) and MnSOD (p.Val16Ala) polymorphisms with diabetic retinopathy in T2DM patients from North India. Diabetes Res Clin Pract. 2014;104(1):155–62.

    Article  CAS  Google Scholar 

  81. Matsumoto A, Iwashima Y, Abiko A, Morikawa A, Sekiguchi M, Eto M, et al. Detection of the association between a deletion polymorphism in the gene encoding angiotensin I-converting enzyme and advanced diabetic retinopathy. Diabetes Res Clin Pract. 2000;50(3):195–202.

    Article  CAS  Google Scholar 

  82. Imperatore G, Hanson RL, Pettitt DJ, Kobes S, Bennett PH, Knowler WC. Sib-pair linkage analysis for susceptibility genes for microvascular complications among pima Indians with type 2 diabetes. Pima Diabetes Genes Group Diabetes [Internet]. 1998;47(5):821–30. Available from: http://diabetes.diabetesjournals.org/content/47/5/821.abstract

    CAS  Google Scholar 

  83. Looker HC, Nelson RG, Chew E, Klein R, Klein BEK, Knowler WC, et al. Genome-wide linkage analyses to identify Loci for diabetic retinopathy. Diabetes. 2007;56(4):1160–6.

    Article  CAS  Google Scholar 

  84. Hallman DM, Boerwinkle E, Gonzalez VH, Klein BEK, Klein R, Hanis CL. A genome-wide linkage scan for diabetic retinopathy susceptibility genes in Mexican Americans with type 2 diabetes from Starr County. Texas Diabetes. 2007;56(4):1167–73.

    Article  CAS  Google Scholar 

  85. Grassi MA, Tikhomirov A, Ramalingam S, Below JE, Cox NJ, Nicolae DL. Genome-wide meta-analysis for severe diabetic retinopathy. Hum Mol Genet [Internet]. 2011;20(12):2472–81. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098732/

    Article  CAS  Google Scholar 

  86. Huang Y-C, Lin J-M, Lin H-J, Chen C-C, Chen S-Y, Tsai C-H, et al. Genome-wide association study of diabetic retinopathy in a Taiwanese population. Ophthalmology. 2011;118(4):642–8.

    Article  Google Scholar 

  87. Awata T, Yamashita H, Kurihara S, Morita-Ohkubo T, Miyashita Y, Katayama S, et al. A genome-wide association study for diabetic retinopathy in a Japanese population: potential association with a long intergenic non-coding RNA. PLoS One. 2014;9(11):e111715.

    Article  Google Scholar 

  88. Simo R, Sundstrom JM, Antonetti DA. Ocular anti-VEGF therapy for diabetic retinopathy: the role of VEGF in the pathogenesis of diabetic retinopathy. Diabetes Care. 2014;37(4):893–9.

    Article  CAS  Google Scholar 

  89. Zhang L, Xia H, Han Q, Chen B. Effects of antioxidant gene therapy on the development of diabetic retinopathy and the metabolic memory phenomenon. Graefes Arch Clin Exp Ophthalmol. 2015;253(2):249–59.

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

None of the authors have any proprietary interests or conflicts of interest related to this submission.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nare, S., Mohan, S., Satagopan, U., Natarajan, S., Kumaramanickavel, G. (2019). Diabetic Retinopathy: Clinical, Genetic, and Health Economics (An Asian Perspective). In: Prakash, G., Iwata, T. (eds) Advances in Vision Research, Volume II. Essentials in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-13-0884-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0884-0_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0883-3

  • Online ISBN: 978-981-13-0884-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics