Skip to main content

Overviews of Biomimetic Medical Materials

  • Chapter
  • First Online:
Biomimetic Medical Materials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1064))

Abstract

This chapter describes the overviews of biomimetic medical materials which covers innovation and significance of terminology, diverse fabrication methods, and technologies ranges from nanotechnology to 3D printing to develop biomimetic materials for medical applications. It also depicts specific fundamental characteristics required for a material to be a model biomimetic material for particular medical application. It basically outlines current statuses of biomimetic medical materials used for tissue engineering and regenerative medicine, drug/protein delivery, bioimaging, biosensing, and 3D bioprinting technology. It also illustrates the effect of functionalization of a material through chemical and biological approaches towards different applications. Not only, the key properties and potential applications of the biomimetic materials, but it also explains the protection and utilization of intellectual property associated with biomedical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aime S, Frullano L, Geninatti Crich S (2002) Compartmentalization of a gadolinium complex in the apoferritin cavity: a route to obtain high relaxivity contrast agents for magnetic resonance imaging. Angew Chem Int Ed 41(6):1017–1019

    Article  CAS  Google Scholar 

  • An X, Butler TW, Washington M, Nayak SK, Kar S (2011) Optical and sensing properties of 1-pyrenecarboxylic acid-functionalized graphene films laminated on polydimethylsiloxane membranes. ACS Nano 5(2):1003–1011

    Article  CAS  PubMed  Google Scholar 

  • Bacakova L, Novotná K, Parizek M (2014) Polysaccharides as cell carriers for tissue engineering: the use of cellulose in vascular wall reconstruction. Physiol Res 63:S29

    CAS  PubMed  Google Scholar 

  • Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  CAS  PubMed  Google Scholar 

  • Bar-Cohen Y (2006) Biomimetics: biologically inspired technologies. CRC/Taylor & Francis, Boca Raton isbn:9780849331633

    Google Scholar 

  • Bello OS, Adegoke KA, Oyewole RO (2013) Biomimetic materials in our world: a review. IOSR J Appl Chem (IOSR-JAC) 5:22–35

    Google Scholar 

  • Benyus J (1997) Biomimicry: innovation inspired by nature. William Morrow & Company Inc, New York, isbn:978–0688–16099-9

    Google Scholar 

  • Betre H, Ong SR, Guilak F, Chilkoti A, Fermor B, Setton LA (2006) Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials 27(1):91–99

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya P, Du D, Lin Y (2014) Bioinspired nanoscale materials for biomedical and energy applications. J R Soc Interface 11(95):20131067

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bode SA, Minten IJ, Nolte RJ, Cornelissen JJ (2011) Reactions inside nanoscale protein cages. Nanoscale 3(6):2376–2389

    Article  CAS  PubMed  Google Scholar 

  • Boland T, Tao X, Damon BJ, Manley B, Kesari P, Jalota S, Bhaduri S (2007) Drop-on-demand printing of cells and materials for designer tissue constructs. Mater Sci Eng C 27(3):372–376

    Article  CAS  Google Scholar 

  • Branco MC, Schneider JP (2009) Self-assembling materials for therapeutic delivery. Acta Biomater 5(3):817–831

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213(2):341–347

    Article  CAS  PubMed  Google Scholar 

  • Chacko RT, Ventura J, Zhuang J, Thayumanavan S (2012) Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev 64(9):836–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen A, Bao Y, Ge X, Shin Y, Du D, Lin Y (2012) Magnetic particle-based immunoassay of phosphorylated p53 using protein cage template lead phosphate and carbon nanospheres for signal amplification. RSC Adv 2(29):11029–11034

    Article  CAS  Google Scholar 

  • Chen C, Bang S, Cho Y, Lee S, Lee I, Zhang S, Noh I (2016) Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone. Biomater Res 20(1):10

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen F, Ni Y, Liu B, Zhou T, Yu C, Su Y, Zhu X, Yu X, Zhou Y (2017) Self-crosslinking and injectable hyaluronic acid/RGD-functionalized pectin hydrogel for cartilage tissue engineering. Carbohydr Polym 166:31–44

    Article  CAS  PubMed  Google Scholar 

  • Chilkoti A, Christensen T, MacKay JA (2006) Stimulus responsive elastin biopolymers: applications in medicine and biotechnology. Curr Opin Chem Biol 10(6):652–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen K, Xu C, Chai W, Zhang Z, Fu J, Huang Y (2015) Freeform inkjet printing of cellular structures with bifurcations. Biotechnol Bioeng 112(5):1047–1055

    Article  CAS  PubMed  Google Scholar 

  • Chung L, Maestas DR Jr, Housseau F, Elisseeff JH (2017) Key players in the immune response to biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev 114:184–192

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Nowicki M, Fisher JP, Zhang LG (2017) 3D bioprinting for organ regeneration. Adv Healthc Mater 6(1):1601118

    Article  CAS  Google Scholar 

  • Eggermont M, (2008) Biomimetics as problem-solving, creativity and innovation tool. CDEN/C 2E2. Winnipeg, University of Manitoba, Canada, 114:59–67

    Google Scholar 

  • Entekhabi E, Nazarpak MH, Moztarzadeh F, Sadeghi A (2016) Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity. Mater Sci Eng C 69:380–387

    Article  CAS  Google Scholar 

  • Erik D, Stephen M (2002) Bio-inspired materials chemistry. Adv Mater 14:1–14

    Google Scholar 

  • Fan K, Cao C, Pan Y, Lu D, Yang D, Feng J, Song L, Liang M, Yan X (2012) Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol 7(7):459

    Article  CAS  PubMed  Google Scholar 

  • Fan M, Ma Y, Zhang Z, Mao J, Tan H, Hu X (2015) Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels–Alder chemistry for adipose tissue engineering. Mater Sci Eng C 56:311–317

    Article  CAS  Google Scholar 

  • Gao W (2015) The chemistry of graphene oxide. In: Graphene oxide. Springer, Cham, pp 61–95

    Chapter  Google Scholar 

  • Gardner AB, Lee SK, Woods EC, Acharya AP (2013) Biomaterials-based modulation of the immune system. Bio Med Res Int Article ID 732182, 2013:1–7

    Article  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183

    Article  CAS  PubMed  Google Scholar 

  • Gelain F, Horii A, Zhang S (2007) Designer self-assembling peptide scaffolds for 3-D tissue cell cultures and regenerative medicine. Macromol Biosci 7(5):544–551

    Article  CAS  PubMed  Google Scholar 

  • Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214

    Article  CAS  PubMed  Google Scholar 

  • Groen N, Guvendiren M, Rabitz H, Welsh WJ, Kohn J, de Boer J (2016) Stepping into the omics era: opportunities and challenges for biomaterials science and engineering. Acta Biomater 34:133–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu BK, Choi DJ, Park SJ, Kim MS, Kang CM, Kim CH (2016) 3-dimensional bioprinting for tissue engineering applications. Biomater Res 20(1):12. https://doi.org/10.1186/s40824-016-0058-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gudapati H, Dey M, Ozbolat I (2016) A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials 102:20–42

    Article  CAS  PubMed  Google Scholar 

  • Guvendiren M, Molde J, Soares RM, Kohn J (2016) Designing biomaterials for 3D printing. ACS Biomater Sci Eng 2(10):1679–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275(3):161–203

    Article  PubMed  Google Scholar 

  • Hatayama T, Nakada A, Nakamura H, Mariko W, Tsujimoto G, Nakamura T (2017) Regeneration of gingival tissue using in situ tissue engineering with collagen scaffold. Oral Surg, Oral Med, Oral Pathol, Oral Radiol 124(4):348–354

    Article  Google Scholar 

  • Helms B, Meijer EW (2006) Dendrimers at work. SCIENCE-NEW YORK THEN WASHINGTON 313(5789):929

    Article  CAS  Google Scholar 

  • Hengstenberg A, Bloch A, Dietzel D, Schuhmann W (2001) Spatially resolved detection of neurotransmitter secretion from individual cells by means of scanning electrochemical microscopy. Angew Chem Int Ed 40:905–908

    Article  CAS  Google Scholar 

  • Highley CB, Rodell CB, Burdick JA (2015) Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv Mater 27(34):5075–5079

    Article  CAS  PubMed  Google Scholar 

  • Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Article  Google Scholar 

  • Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8(3):032002

    Article  PubMed  CAS  Google Scholar 

  • Hong S, Sycks D, Chan HF, Lin S, Lopez GP, Guilak F, Leong KW, Zhao X (2015) 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv Mater 27(27):4035–4040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornick JF, Rajan K (2015) Chapter 16: intellectual property in 3d printing and nanotechnology, 3D bioprinting and nanotechnology in tissue engineering. John F. Hornick. Published by Elsevier Inc.

    Google Scholar 

  • Hou Y, Cai K, Li J, Chen X, Lai M, Hu Y, Luo Z, Ding X, Xu D (2013) Effects of titanium nanoparticles on adhesion, migration, proliferation, and differentiation of mesenchymal stem cells. Int J Nanomedicine 8:3619

    PubMed  PubMed Central  Google Scholar 

  • Hsieh PC, MacGillivray C, Gannon J, Cruz FU, Lee RT (2006) Local controlled intramyocardial delivery of platelet-derived growth factor improves postinfarction ventricular function without pulmonary toxicity. Circulation 114(7):637–644

    Article  CAS  PubMed  Google Scholar 

  • Hu SH, Chen YW, Hung WT, Chen IW, Chen SY (2012) Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and Photothermal therapy monitored in situ. Adv Mater 24(13):1748–1754

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Liu Y, Yang Y, Cui J, Huang Z, Wang Y, Yang L, Wang H, Xiao Y, Rong J (2013) One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide. J Mater Chem B 1(1):39–42

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41(2):666–686

    Article  CAS  PubMed  Google Scholar 

  • Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2(2):022001

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jang J, Kim TG, Kim BS, Kim SW, Kwon SM, Cho DW (2016) Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking. Acta Biomater 33:88–95

    Article  CAS  PubMed  Google Scholar 

  • Jang J, Park HJ, Kim SW, Kim H, Park JY, Na SJ, Kim HJ, Park MN, Choi SH, Park SH, Kim SW (2017) 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials 112:264–274

    Article  CAS  PubMed  Google Scholar 

  • Jeong B, Akter R, Han OH, Rhee CK, Rahman MA (2013) Increased electrocatalyzed performance through dendrimer-encapsulated gold nanoparticles and carbon nanotube-assisted multiple bienzymatic labels: highly sensitive electrochemical immunosensor for protein detection. Anal Chem 85(3):1784–1791

    Article  CAS  PubMed  Google Scholar 

  • Ji S, Guvendiren M (2017) Recent advances in bioink design for 3D bioprinting of tissues and organs. Front Bioeng Biotechnol 5:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Julian FVV, Olga AB, Nikolaj RB, Adrian B, Anja KP (2006) Biomimetics: its practice and theory. J R Soc Interface 3:471–482

    Article  Google Scholar 

  • Jung CS, Kim BK, Lee J, Min BH, Park SH (2017) Development of printable natural cartilage matrix bioink for 3D printing of irregular tissue shape. Tissue Eng Regen Med 15:1–8. https://doi.org/10.1007/s13770-017-0104-8

    Article  CAS  Google Scholar 

  • Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25(4):901–905

    Article  CAS  PubMed  Google Scholar 

  • Kersey FR, Merkel TJ, Perry JL, Napier ME, DeSimone JM (2012) Effect of aspect ratio and deformability on nanoparticle extravasation through nanopores. Langmuir 28(23):8773–8781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JE, Kim SH, Jung Y (2016) Current status of three-dimensional printing inks for soft tissue regeneration. Tissue Eng Regen Med 13(6):636–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolos E, Ruys AJ (2013) Biomimetic scaffold materials used in tissue engineering. J Biomim Biomater Tissue Eng 18:e101. https://doi.org/10.4172/1662-100X.1000e101

    Article  Google Scholar 

  • Kutlusoy T, Oktay B, Apohan NK, Süleymanoğlu M, Kuruca SE (2017) Chitosan-co-hyaluronic acid porous cryogels and their application in tissue engineering. Int J Biol Macromol 103:366–378

    Article  CAS  PubMed  Google Scholar 

  • Lee WC, Loh KP, Lim CT (2018) When stem cells meet graphene: opportunities and challenges in regenerative medicine. Biomaterials 155:236–250

    Article  PubMed  CAS  Google Scholar 

  • Li M, Yang X, Ren J, Qu K, Qu X (2012) Using graphene oxide high near-infrared absorbance for Photothermal treatment of Alzheimer's disease. Adv Mater 24(13):1722–1728

    Article  CAS  PubMed  Google Scholar 

  • Li N, Zhang Q, Gao S, Song Q, Huang R, Wang L, Liu L, Dai J, Tang M, Cheng G (2013) Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci Rep 3:1604

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li C, Faulkner-Jones A, Dun AR, Jin J, Chen P, Xing Y, Yang Z, Li Z, Shu W, Liu D, Duncan RR (2015) Rapid formation of a supramolecular polypeptide–DNA hydrogel for in situ three-dimensional multilayer bioprinting. Angew Chem Int Ed 54(13):3957–3961

    Article  CAS  Google Scholar 

  • Liao S, Chan CK, Ramakrishna S (2008) Stem cells and biomimetic materials strategies for tissue engineering. Mater Sci Eng C 28(8):1189–1202

    Article  CAS  Google Scholar 

  • Lim KS, Schon BS, Mekhileri NV, Brown GC, Chia CM, Prabakar S, Hooper GJ, Woodfield TB (2016) New visible-light photoinitiating system for improved print fidelity in gelatin-based bioinks. ACS Biomater Sci Eng 2(10):1752–1762

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Xie J, Niu G, Zhang F, Gao H, Yang M, Quan Q, Aronova MA, Zhang G, Lee S, Leapman R (2011) Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett 11(2):814–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Lin Y (2007) Electrochemical quantification of single-nucleotide polymorphisms using nanoparticle probes. J Am Chem Soc 129(34):10394–10401

    Article  CAS  PubMed  Google Scholar 

  • Liu JC, Heilshorn SC, Tirrell DA (2004) Comparative cell response to artificial extracellular matrix proteins containing the RGD and CS5 cell-binding domains. Biomacromolecules 5(2):497–504

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Wang J, Lea SA, Lin Y (2006a) Bioassay labels based on apoferritin nanovehicles. Chembiochem 7(9):1315–1319

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Wu H, Wang J, Lin Y (2006b) Apoferritin-templated synthesis of metal phosphate nanoparticle labels for electrochemical immunoassay. Small 2(10):1139–1143

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41(6):2283–2307

    Article  CAS  PubMed  Google Scholar 

  • Loessner D, Meinert C, Kaemmerer E, Martine LC, Yue K, Levett PA, Klein TJ, Melchels FP, Khademhosseini A, Hutmacher DW (2016) Functionalization, preparation and use of cell-laden gelatin methacryloyl–based hydrogels as modular tissue culture platforms. Nat Protoc 11(4):727

    Article  CAS  PubMed  Google Scholar 

  • Maeda M, Tani S, Sano A, Fujioka K (1999) Microstructure and release characteristics of the minipellet, a collagen-based drug delivery system for controlled release of protein drugs. J Control Release 62(3):313–324

    Article  CAS  PubMed  Google Scholar 

  • MaHam A, Tang Z, Wu H, Wang J, Lin Y (2009) Protein-based nanomedicine platforms for drug delivery. Small 5(15):1706–1721

    Article  CAS  PubMed  Google Scholar 

  • Mazur A, Litt I, Shorr E (1950) Chemical properties of ferritin and their relation to its vasodepressor activity. J Biol Chem 187:473–484

    CAS  PubMed  Google Scholar 

  • Müller M, Becher J, Schnabelrauch M, Zenobi-Wong M (2015) Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting. Biofabrication 7(3):035006

    Article  PubMed  CAS  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan R (2008) Nanoparticles: building blocks for nanotechnology, nanoparticles: synthesis, stabilization, passivation, and functionalization, chapter 1: ACS Symposium Series, 996:2–14. ISBN:9780841269699eISBN:9780841221390

    Google Scholar 

  • Nakamura T, Konno K (1954) Studies on ferritin. J Biochem 41(4):499–502

    Article  CAS  Google Scholar 

  • Napier ME, JM DS (2007) Nanoparticle drug delivery platform. J Macromol Sci Part C: Polym Rev 47(3):321–327

    CAS  Google Scholar 

  • Nassar W, El-Ansary M, Sabry D, Mostafa MA, Fayad T, Kotb E, Temraz M, Saad AN, Essa W, Adel H (2017) Erratum to: umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases. Biomater Res 21(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  • Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, Ee PL, Ahn JH, Hong BH, Pastorin G, Ozyilmaz B (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6):4670–4678

    Article  CAS  PubMed  Google Scholar 

  • Nguyen DG, Funk J, Robbins JB, Crogan-Grundy C, Presnell SC, Singer T, Roth AB (2016) Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS One 11(7):e0158674

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Pro Polym Sci 33(4):448–477

    Article  CAS  Google Scholar 

  • Ouyang L, Highley CB, Rodell CB, Sun W, Burdick JA (2016) 3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking. ACS Biomater Sci Eng 2(10):1743–1751

    Article  CAS  PubMed  Google Scholar 

  • Ozbolat IT, Moncal KK, Gudapati H (2017) Evaluation of bioprinter technologies. Addit Manuf 13:179–200

    Article  CAS  Google Scholar 

  • Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22(6):734–738

    Article  PubMed  CAS  Google Scholar 

  • Pan T, Song W, Cao X, Wang Y (2016) 3D bioplotting of gelatin/alginate scaffolds for tissue engineering: influence of crosslinking degree and pore architecture on physicochemical properties. J Mater Sci Technol 32(9):889–900

    Article  Google Scholar 

  • Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Jang J, Lee JS, Cho DW (2016) Current advances in three-dimensional tissue/organ printing. Tissue Eng Regen Med 13(6):612–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pati F, Jang J, Ha DH, Kim SW, Rhie JW, Shim JH, Kim DH, Cho DW (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:3935

    Article  CAS  PubMed  Google Scholar 

  • Patterson J, Martino MM, Hubbell JA (2010) Biomimetic materials in tissue engineering. Mater Today 13(1–2):14–22

    Article  CAS  Google Scholar 

  • Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany LB, Zhan X, Gao G, Vithayathil SA (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12(2):844–849

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  • Ramón-Azcón J, Ahadian S, Estili M, Liang X, Ostrovidov S, Kaji H, Shiku H, Ramalingam M, Nakajima K, Sakka Y, Khademhosseini A (2013) Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers. Adv Mater 25(29):4028–4034

    Article  PubMed  CAS  Google Scholar 

  • Raphael B, Khalil T, Workman VL, Smith A, Brown CP, Streuli C, Saiani A, Domingos M (2017) 3D cell bioprinting of self-assembling peptide-based hydrogels. Mater Lett 190:103–106

    Article  CAS  Google Scholar 

  • Rashid ST, Alexander GJ (2013) Induced pluripotent stem cells: from Nobel prizes to clinical applications. J Hepatol 58(3):625–629

    Article  PubMed  Google Scholar 

  • Ribeiro M, de Moraes MA, Beppu MM, Garcia MP, Fernandes MH, Monteiro FJ, Ferraz MP (2015) Development of silk fibroin/nanohydroxyapatite composite hydrogels for bone tissue engineering. Eur Polym J 67:66–77

    Article  CAS  Google Scholar 

  • Rolland JP, Maynor BW, Euliss LE, Exner AE, Denison GM, DeSimone JM (2005) Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J Am Chem Soc 127(28):10096–10100

    Article  CAS  PubMed  Google Scholar 

  • Schneider A, Garlick JA, Egles C (2008) Self-assembling peptide nanofiber scaffolds accelerate wound healing. PLoS One 3(1):e1410

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Scuderi P, Lam K, Ryan K, Petersen E, Sterling K, Finley P, Ray CG, Slymen D, Salmon S (1986 Dec 13) Raised serum levels of tumour necrosis factor in parasitic infections. Lancet 328(8520):1364–1365

    Article  Google Scholar 

  • Segers VF, Tokunou T, Higgins LJ, MacGillivray C, Gannon J, Lee RT (2007) Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation 116(15):1683–1692

    Article  CAS  PubMed  Google Scholar 

  • Shafiee A, Atala A (2016) Printing technologies for medical applications. Trends Mol Med 22(3):254–265

    Article  PubMed  Google Scholar 

  • Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81(6):2378–2382

    Article  CAS  PubMed  Google Scholar 

  • Shao Y, Zhang S, Engelhard MH, Li G, Shao G, Wang Y, Liu J, Aksay IA, Lin Y (2010) Nitrogen-doped graphene and its electrochemical applications. J Mater Chem 20(35):7491–7496

    Article  CAS  Google Scholar 

  • Sharma AK, Gothwal A, Kesharwani P, Alsaab H, Iyer AK, Gupta U (2017) Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov Today 22(2):314–326

    Article  CAS  PubMed  Google Scholar 

  • Sheehy EJ, Cunniffe GM, O'Brien FJ (2018) Collagen-based biomaterials for tissue regeneration and repair. In: Peptides and proteins as biomaterials for tissue regeneration and repair. Woodhead Publishing, Duxford, pp 127–150

    Chapter  Google Scholar 

  • Shin SR, Bae H, Cha JM, Mun JY, Chen YC, Tekin H, Shin H, Farshchi S, Dokmeci MR, Tang S, Khademhosseini A (2011) Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano 6(1):362–372

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shin YC, Kim J, Kim SE, Song SJ, Hong SW, Oh JW, Lee J, Park JC, Hyon SH, Han DW (2017) RGD peptide and graphene oxide co-functionalized PLGA nanofiber scaffolds for vascular tissue engineering. Regen biomater 4(3):159–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303(5662):1352–1355

    Article  CAS  PubMed  Google Scholar 

  • Soni KS, Desale SS, Bronich TK (2016) Nanogels: an overview of properties, biomedical applications and obstacles to clinical translation. J Control Release 240:109–126

    Article  CAS  PubMed  Google Scholar 

  • Suci PA, Kang S, Young M, Douglas T (2009) A streptavidin-protein cage janus particle for polarized targeting and modular functionalization. J Am Chem Soc 131:9164–9165

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  • Tan YJ, Tan X, Yeong WY, Tor SB (2016) Hybrid microscaffold-based 3D bioprinting of multi-cellular constructs with high compressive strength: a new biofabrication strategy. Sci Rep 6:39140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Z, Wu H, Zhang Y, Li Z, Lin Y (2011) Enzyme-mimic activity of ferric nano-core residing in ferritin and its biosensing applications. Anal Chem 83(22):8611–8616

    Article  CAS  PubMed  Google Scholar 

  • Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, Okamoto A (2012) Optically tunable amino-functionalized graphene quantum dots. Adv Mater 24(39):5333–5338

    Article  CAS  PubMed  Google Scholar 

  • Tomalia DA, Naylor AM, Goddard WA (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed 29(2):138–175

    Article  Google Scholar 

  • Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4(7):528

    Article  CAS  PubMed  Google Scholar 

  • Turyanska L, Bradshaw TD, Sharpe J, Li M, Mann S, Thomas NR, Patane A (2009) The biocompatibility of Apoferritin-encapsulated PbS quantum dots. Small 5(15):1738–1741

    Article  CAS  PubMed  Google Scholar 

  • Uchida M, Klem MT, Allen M, Suci P, Flenniken M, Gillitzer E, Varpness Z, Liepold LO, Young M, Douglas T (2007) Biological containers: protein cages as multifunctional Nanoplatforms. Adv Mater 19:1025–1042

    Article  CAS  Google Scholar 

  • Vunjak-Novakovic G, Scadden DT (2011) Biomimetic platforms for human stem cell research. Cell Stem Cell 8(3):252–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walimbe T, Panitch A, Sivasankar PM (2017) A review of hyaluronic acid and hyaluronic acid-based hydrogels for vocal fold tissue engineering. J Voice 31(4):416–423

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li Y, Tang L, Lu J, Li J (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11(4):889–892

    Article  CAS  Google Scholar 

  • Wang Y, Li Z, Hu D, Lin CT, Li J, Lin Y (2010a) Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc 132(27):9274–9276

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010b) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4(4):1790–1798

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Liu N, Allen R, Tok JB, Wu Y, Zhang F, Chen Y, Bao Z (2013a) A rapid and efficient self-healing Thermo-reversible elastomer crosslinked with graphene oxide. Adv Mater 25(40):5785–5790

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Cai X, Hu J, Shao N, Wang F, Zhang Q, Xiao J, Cheng Y (2013b) Glutathione-triggered “off–on” release of anticancer drugs from dendrimer-encapsulated gold nanoparticles. J Am Chem Soc 135(26):9805–9810

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhang Y, Li T, Tian W, Zhang Q, Cheng Y (2013c) Generation 9 polyamidoamine dendrimer encapsulated platinum nanoparticle mimics catalase size, shape, and catalytic activity. Langmuir 29(17):5262–5270

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li Z, Weber TJ, Hu D, Lin CT, Li J, Lin Y (2013d) In situ live cell sensing of multiple nucleotides exploiting DNA/RNA aptamers and graphene oxide nanosheets. Anal Chem 85(14):6775–6782

    Article  CAS  PubMed  Google Scholar 

  • Weiss NO, Zhou H, Liao L, Liu Y, Jiang S, Huang Y, Duan X (2012) Graphene: an emerging electronic material. Adv Mater 224(43):5782–5825

    Article  CAS  Google Scholar 

  • Wu P, Qian Y, Du P, Zhang H, Cai C (2012) Facile synthesis of nitrogen-doped graphene for measuring the releasing process of hydrogen peroxide from living cells. J Mater Chem 22(13):6402–6412

    Article  CAS  Google Scholar 

  • Wüst S, Müller R, Hofmann S (2015) 3D bioprinting of complex channels—effects of material, orientation, geometry, and cell embedding. J Biomed Mater Res A 103(8):2558–2570

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Zhou Y, Bi H, Yin K, Wan S, Sun L (2013) Large-range control of the microstructures and properties of three-dimensional porous graphene. Sci Rep 3:2117

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang K, Hu L, Ma X, Ye S, Cheng L, Shi X, Li C, Li Y, Liu Z (2012) Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv Mater 24(14):1868–1872

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Feng L, Shi X, Liu Z (2013a) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42(2):530–547

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Asiri AM, Tang Z, Du D, Lin Y (2013b) Graphene based materials for biomedical applications. Mater Today 16(10):365–373

    Article  CAS  Google Scholar 

  • Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A (1995) Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16(18):1385–1393

    Article  PubMed  Google Scholar 

  • Zhang L, Xia J, Zhao Q, Liu L, Zhang Z (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4):537–544

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Lu Z, Zhao Q, Huang J, Shen H, Zhang Z (2011a) Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small 7(4):460–464

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Guo Z, Huang D, Liu Z, Guo X, Zhong H (2011b) Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 32(33):8555–8561

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Tang Z, Wang J, Wu H, Lin CT, Lin Y (2011c) Apoferritin nanoparticle: a novel and biocompatible carrier for enzyme immobilization with enhanced activity and stability. J Mater Chem 21(43):17468–17475

    Article  CAS  Google Scholar 

  • Zhang M, Bai L, Shang W, Xie W, Ma H, Fu Y, Fang D, Sun H, Fan L, Han M, Liu C (2012) Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J Mater Chem 22(15):7461–7467

    Article  CAS  Google Scholar 

  • Zhang H, Zhai Y, Wang J, Zhai G (2016) New progress and prospects: the application of nanogel in drug delivery. Mater Sci Eng C 60:560–568

    Article  CAS  Google Scholar 

  • Zhen Z, Tang W, Chen H, Lin X, Todd T, Wang G, Cowger T, Chen X, Xie J (2013) RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS Nano 7(6):4830–4837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81(14):5603–5613

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Tang C, Kottke-Marchant K, Marchant RE (2009) Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides. Bioconjug Chem 20(2):333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, Li B, Tian L, Liu F, Hu R, Gao H (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem comm 47(24):6858–6860

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) Grant (2015R1A2A1A10054592).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Insup Noh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, D., Noh, I. (2018). Overviews of Biomimetic Medical Materials. In: Noh, I. (eds) Biomimetic Medical Materials. Advances in Experimental Medicine and Biology, vol 1064. Springer, Singapore. https://doi.org/10.1007/978-981-13-0445-3_1

Download citation

Publish with us

Policies and ethics