Skip to main content

Use of Acidophilic or Acidotolerant Actinobacteria for Sustainable Agricultural Production in Acidic Soils

  • Chapter
  • First Online:
Book cover Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 8))

Abstract

The quest for increasing agricultural production for the burgeoning human population had been effective with the use of nitrogen-based fertilizers. However, its prolong use and occurrence of acid rain resulted in dropping the soil pH below 5.0, whose environmental conditions considerably decreased the beneficial effects of soil neutrophilic bacteria while increasing the abundance of pathogenic fungi. Furthermore, the use of pesticide and synthetic fertilizers had adverse effect on human health and environment. An alternative method will therefore rely on minor groups of bacteria that can sustain its growth under extreme condition. And particularly for designing products to be applied in acidic soil, acidophilic and/or acidotolerant Actinobacteria having antifungal and/or plant growth-promoting activities had tremendous potential for developments as novel biocontrol and/or biofertilizer products. As Actinobacteria can survive under many adverse environment conditions by forming spores, they can be promising bio-agents for sustainable agricultural production. Actinobacteria may help in the degradation of organic matter into humus and release of nitrogen, carbon, and ammonia, in turn supplying the nutrients to agricultural crops in acidic soil. Release of ammonia due to decomposition of chitin by chitinase-producing Actinobacteria may raise the pH of soils, paving a way for other neutrophilic plant growth-promoting bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP (2015) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80:1–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhat JM, Narayanan MS (1996) Antifungal activity (in vitro) of certain polyene macrolide antibiotics against various plant pathogens. Hindustan Antibiot Bull 38:32–36

    PubMed  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  Google Scholar 

  • Boukaew S, Plubrukam A, Prasertsan P (2013) Effect of volatile substances from Streptomyces philanthi RM-1-138 on growth of Rhizoctonia solani on rice leaf. Biol Control 58:471–482

    CAS  Google Scholar 

  • Brzezinska MS, Jankiewicz U, Walczak M (2013) Biodegradation of chitinous substances and chitinase production by the soil actinomycete Streptomyces rimosus. Int Biodeterior Biodegrad 201:104–110

    Article  CAS  Google Scholar 

  • Bull AT (2011) Actinobacteria of the extremobiosphere. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook. Springer Verlag, Tokyo, pp 1203–1240

    Chapter  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chater KF (1993) Genetics of differentiation in Streptomyces. Annu Rev Microbiol 47:685–713

    Article  CAS  PubMed  Google Scholar 

  • Cho S-H, Han J-H, Ko H-Y, Kim SB (2008) Streptacidiphilus anmyonensis sp. nov., Streptacidiphilus rugosus sp. nov. and Streptacidiphilus melanogenes sp. nov., acidophilic actinobacteria isolated from Pinus soils. Int J Syst Evol Microbiol 58:1566–1570

    Article  CAS  Google Scholar 

  • Choquer M, Fournier E, Kunz C, Levis C, Pradier JM, Simon A, Viaud M (2007) Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett 277:1–10. https://doi.org/10.1111/j.1574-6968.2007.00930.x

    Article  PubMed  CAS  Google Scholar 

  • Corke CT, Chase FE (1964) Comparative studies of actinomycetes populations in acid podzolic and neutral mull forest soil. Proc Soil Sci Am 28:68–69

    Article  Google Scholar 

  • Crawford DL, Pometto AL III, Crawford RL (1983) Lignin degradation by Streptomyces viridosporus: isolation and characterization of a new polymeric lignin degradation intermediate. Appl Environ Microbiol 45:898–904

    PubMed  PubMed Central  CAS  Google Scholar 

  • de Jesus Sousa JA, Olivares FL (2016) Plant growth promotion by streptomycetes: ecophysiology, mechanisms and applications. Chem Biol Technol Agric 3:24. https://doi.org/10.1186/s40538-016-0073-5

    Article  CAS  Google Scholar 

  • de Weger LA, van der Bij AJ, Dekkers LC, Simons M, Wijffelman CA, Lugtenberg BJJ (1995) Colonization of the rhizosphere of crop plants by plant-beneficial pseudomonads. FEMS Microbiol Ecol 17:221–228

    Article  Google Scholar 

  • Dimpka C, Svatoš A, Merten D, Büchel G, Kothe E (2008) Hydroxamate siderophore produced by Streptomyces acidiscbies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172

    Article  CAS  Google Scholar 

  • FAO (2000) Bridging the gap in rice production. http://www.fao.org/News/2000/001203-e.htm (17/6/2008)

  • Franco-Correa M, Quintana A, Duque C, Saurez C, Rodríguez MX, Barea J-M (2010) Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl Soil Ecol 45:209–217

    Article  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  Google Scholar 

  • Goodfellow M, O’Donnell AG (1989) Search and discovery of industrially significant actinomycetes. In: Baumberg S, Hunter IS, Rhodes PM (eds) Microbial products: new approaches, Society for General Microbiology Symposium No. 44. Cambridge University Press, Cambridge, pp 343–383

    Google Scholar 

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 29:319–322

    Google Scholar 

  • Golinska P, Ahmed L, Wang D, Goodfellow M (2013) Streptacidiphilus durhamensis sp. nov., isolated from a spruce forest soil. Antonia van Leeuwenhoek 104:199–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Liu N, Li X, Ding Y, Shang F, Gao Y, Ruan J, Huang Y (2015) Red soils harbour diverse culturable actinomycetes that are promising sources of novel secondary metabolites. Appl Environ Microbiol 81:3086–3103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagedorn C (1976) Influence of soil acidity on Streptomyces population inhabiting forest soils. Appl Environ Microbiol 32:368–375

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008a) Rock phosphate-solubilizing actinomycetes: screening for plant growth-promoting activities. World J Microbiol Biotechnol 24:2565–2575

    Article  CAS  Google Scholar 

  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008b) Growth promotion and protection against damping-off of wheat by two rock phosphate solubilising actinomycetes in a P-deficient soil under greenhouse conditions. Appl Soil Ecol 40:510–517

    Article  Google Scholar 

  • Haney RL, Senseman SA, Hons FM, Zuberer DA (2000) Effect of glyphosate on soil microbial activity and biomass. Weed Sci 48:89–93

    Article  CAS  Google Scholar 

  • Huang Y, Cui Q, Wang L, Rodriguez C, Quintana E, Goodfellow M, Liu Z (2004) Streptacidiphilus jiangxiensis sp. nov., a novel actinomycete isolated from acidic rhizosphere soil in China. Antonie Van Leeuwenhoek 86:159–165

    Article  CAS  PubMed  Google Scholar 

  • Ilic SB, Konstantinovic SS, Todorovic ZB, Lazic ML, Veljkovic VB, Jokovic N, Radovanovic BC (2007) Characterization and antimicrobial activity of the bioactive metabolites in Streptomycete isolates. Microbiology 76:421–428

    Article  CAS  Google Scholar 

  • Kanbe K, Okamura M, Hattori S, Naganawa H, Hamada M, Okami Y, Takeuchi T (1993) Thienodolin, a new plant growth-regulating substance produced by a Streptomycete strain: I. Taxonomy and fermentation of the producing strain, and the isolation and characterization of thienodolin. Biosci Biotech Biochem 57:632–635

    Article  CAS  Google Scholar 

  • Kanjee U, Houry WA (2013) Mechanisms of acid resistance in Escherichia coli. Annu Rev Microbiol 67:65–81

    Article  CAS  PubMed  Google Scholar 

  • Khamna S, Yokota A, Peberdy J, Lumyong S (2010) Indole-3-acetic acid production by Streptomyces sp. isolated from Thai medicinal rhizosphere soils. Eur Asian J Bio Sci 4:23–32

    Article  CAS  Google Scholar 

  • Khan MR, Williams ST (1975) Studies on the ecology of actinomycetes in soil: VIII. Distribution and characteristics of acidophilic actinomycetes. Soil Biol Biochem 7:345–348

    Article  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture – a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Kim BS, Moon SS, Hwang BK (2000) Structure elucidation and antifungal activity of an anthracycline antibiotic, daunomycin, isolated from Actinomadura roseola. J Agric Food Chem 48:1875–1881

    Article  CAS  PubMed  Google Scholar 

  • Kim BS, Moon SS, Hwang BK (2011) Isolation, identification, and antifungal activity of a macrolide antibiotic, oligomycin A, produces by Streptomyces libani. Can J Bot 77:850–858

    Google Scholar 

  • Kim SB, Lonsdale J, Seong CN, Goodfellow M (2003) Streptacidiphilus gen. nov., acidophilic actinomycetes with wall chemotype I and emendation of the family Streptomycetaceae (Waksman and Henrici 1943 AL) emend. Rainey et al. 1997.Antonie Van Leeuwenhoek 83:107–116 

    Google Scholar 

  • Kim YR, Park S, Kim T-S, Kim M-K, Han J-H, Joung Y, Kim B (2015) Draft genome sequence of Streptacidiphilus oryzae TH49T, an acidophilic actinobacterium isolated from soil. Genome Announc 3:e00703-15. https://doi.org/10.1128/genomeA.00703-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Lazzarini A, Caveletti L, Toppo G, Marinelli F (2000) Rare genera of actinomycetes as potential producers of new antibiotics. Antonie Van Leeuwenhoek 78:399–405

    Article  CAS  PubMed  Google Scholar 

  • Leach AW, Mumford JD (2008) Pesticide environmental accounting: a method for assessing the external costs of individual pesticide applications. Environ Pollut 151:139–147

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Hanna MN, Svensater G, Ellen RP, Cvitkovitch DG (2001) Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J Bacteriol 183:6875–6884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin L, Xu X (2013) Indole-3-acetic acid production by endophytic Streptomyces sp. En-1 isolated from medicinal plants. Curr Microbiol 67:209–217

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Tang H, Lin Z, Xu P (2015) Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol Adv 33:1484–1492

    Article  CAS  PubMed  Google Scholar 

  • Lyu A, Liu H, Che H, Yang L, Zhang J, Wu M, Chen W, Li G (2017) Reveromycins A and B from Streptomyces sp. 3–10: antifungal activity against plant pathogenic fungi In vitro and in a Strawberry food model system. Front Microbiol 8:550. https://doi.org/10.3389/fmicb.2017.00550

    Article  PubMed  PubMed Central  Google Scholar 

  • Mclaughlin BR, Russell PR, Carroll DJ (1988) Cogen plant includes 12-acre greenhouse, oyster farm. Power Eng 92:40–42

    Google Scholar 

  • Misk A, Franco C (2011) Biocontrol of chickpea root rot using endophytic actinobacteria. Biol Control 56:811–822

    Google Scholar 

  • Nimaichand S, Tamrihao K, Yang L-L, Zhu W-Y, Zhang Y-G, Li L, Tang S-K, Ningthoujam DS, Li W-J (2013) Streptomyces hundungensis sp. nov., a novel actinomycete with antifungal activity and plant growth promoting traits. J Antibiot 66:205–209

    Article  CAS  PubMed  Google Scholar 

  • Niyasom C, Boonmak S, Meesri N (2015) Antimicrobial activity of acidophilic actinomycetes isolated from acidic soil. KTMITL Sci Tech J 15:62–69

    Google Scholar 

  • Podile AR, Kishore GK (2006) Plant growth-promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 195–230

    Chapter  Google Scholar 

  • Poomthongdee N, Duangmal K, Pathom-aree W (2015) Acidophilic actinomycetes from rhizospheric soil: diversity and properties beneficial to plants. J Antibiot 68:106–114

    Article  CAS  PubMed  Google Scholar 

  • Prasad P, Singh T, Bedi S (2013) Characterization of the cellulolytic enzyme produced by Streptomyces griseorubens (Accession No. AB184139) isolated from Indian soil. J King Saud Univ-Sci 25:245–250

    Article  Google Scholar 

  • Rajput MS, Kumar G, Rajkumar S (2013) Repression of oxalic acid-mediated mineral phosphate solubilization in rhizospheric isolates of Klebsiella pneumoniae by succinate. Arch Microbiol 195:81–88

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 91:552–555

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28:1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Schröder JJ (2014) The position of mineral nitrogen fertilizer in efficient use of nitrogen and land: a review. Nat Resour 5:936–948

    Google Scholar 

  • Seo M-D, Won H-S, Kim J-H, Mishig-Ochir T, Lee B-J (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17:12276–12286

    Article  CAS  PubMed  Google Scholar 

  • Spector MP, Kenyon WJ (2012) Resistance and survival strategies of Salmonella enteric to environmental stresses. Food Res Int 45:455–481

    Article  CAS  Google Scholar 

  • Srividya S, Thapa A, Bhat DV, Golmei K, Dey N (2012) Streptomyces sp. 9p as effective biocontrol against chilli soilborne fungal pathogens. Euro J Exp Biol 2:163–173

    CAS  Google Scholar 

  • Tamreihao K, Ningthoujam DS, Nimaichand S, Singh ES, Reena P, Singh SH, Nongthomba U (2016a) Biocontrol and plant growth promoting activities of Streptomyces corchorusii strain UCR3-16 and preparation of powder formulation for application as biofertilizer agents for rice plant. Microbiol Res 192:260–270

    Article  CAS  PubMed  Google Scholar 

  • Tamreihao K, Nimaichand S, Chanu SB, Devi KA, Lynda R, Jeeniita N, Ningthoujam DS (2016b) Acidotolerant Streptomyces sp. MBRL 10 from limestone quarry site antagonism against fungal pathogens and growth promotion in rice plants. J King Saud Univ-Sci 30(2):143–292. https://doi.org/10.1016/j.jksus.2016.10.003

    Article  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  CAS  PubMed  Google Scholar 

  • Ventura LA (2000) The effect of soil pH on plant growth. Science Experiments on File Revised Facts on the File, Inc 4:1–5

    Google Scholar 

  • Viaene T, Langendries S, Beirinckx S, Maes M, Goormachtig (2016) Streptomyces as a plant’s best friend ? FEMS Microbiol Eco 92:1–10

    Google Scholar 

  • Wang L, Huang Y, Liu Z, Goodfellow M, Rodriguez C (2006) Streptacidiphilus oryzae sp. nov., an actinomycete isolated from rice-field soil in Thailand. Int J Syst Evol Microbiol 56:1257–1261

    Article  CAS  Google Scholar 

  • Williams P, Camara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191

    Article  CAS  PubMed  Google Scholar 

  • Williams ST, Flowers TH (1978) The influence of pH on starch hydrolysis of neutrophilic and acidophilic streptomycetes. Microbios 20:99–406

    PubMed  CAS  Google Scholar 

  • Williams ST, Robinson CS (1981) The role of Streptomycetes in decomposition of chitin in acidic soils. J Gen Microbiol 127:55–63

    CAS  Google Scholar 

  • Williams B, Kabbage M, Min JY, Britt R, Dickman MB (2011) Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog 7:e1002107. https://doi.org/10.1371/journal.ppat.1002107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winfield MD, Groisman EA (2003) Role of nonhost environment in the lifestyles of Salmonella and Escherichia coli. Appl Environ Microbiol 69:3687–3694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Z-Q, Zhang Z-P, Li J-H, Wei S-J, Tu G-Q (2012) Characterization of Streptomyces padanus JAU4234, a producer of actinomycin X2, fungichromin, and a new polyene macrolide antibiotic. Appl Environ Microbiol 78:589–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Wang L, Cui Q, Huang Y, Liu Z, Zheng G, Goodfellow M (2006) Neutrotolerant acidophilic Streptomyces species isolated from acidic soils in China: Streptomyces guanduensis sp. no., Streptomyces paucisporeus sp. nov., Streptomyces rubidus sp. nov. and Streptomyces yanglinensis sp. nov. Intl J Syst Evol Microbiol 56:1109–1115

    Article  CAS  Google Scholar 

  • Zakalyukina YV, Zenova GM (2007) Antagonistic activity of soil acidophilic actinomycetes. Biol Bull 34:329–332

    Article  Google Scholar 

  • Zhang H, Wang H, Wang Y, Cui H, Xie Z, Pu Y, Pei S, Li F, Qin S (2012) Genomic sequence-based discovery of novel angucyclinone antibiotics from marine Streptomyces sp. W007. FEMS Microbiol Lett 332:105–112

    Article  CAS  PubMed  Google Scholar 

  • Zhou K, Binkley D, Doxtader KG (1992) A new method for estimating gross phosphorus mineralization and immobilization rates in soils. Plant Soil 147:243–250

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the grant from the Department of Biotechnology (DBT), Government of India, given to the Advanced Level State Biotech Hub (BT/04/NE/2009). KT thanks Phungmila Vashum for critical review and proofreading.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tamreihao, K., Salam, N., Ningthoujam, D.S. (2018). Use of Acidophilic or Acidotolerant Actinobacteria for Sustainable Agricultural Production in Acidic Soils. In: Egamberdieva, D., Birkeland, NK., Panosyan, H., Li, WJ. (eds) Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications. Microorganisms for Sustainability, vol 8. Springer, Singapore. https://doi.org/10.1007/978-981-13-0329-6_17

Download citation

Publish with us

Policies and ethics